Specific electrical resistance of conductors


Electrical resistance

Electrical resistance, one of the components of Ohm's law, is expressed in ohms (Ohms). It should be noted that electrical resistance and resistivity are not the same thing. Resistivity is a property of a material, while electrical resistance is a property of an object.

The electrical resistance of a resistor is determined by a combination of its shape and the resistivity of the material from which it is made.

For example, a wirewound resistor made from a long, thin wire has a higher resistance than a resistor made from a short, thick wire of the same metal.

At the same time, a wirewound resistor made of a high resistivity material has greater electrical resistance than a resistor made of a low resistivity material. And all this despite the fact that both resistors are made of wire of the same length and diameter.

To illustrate this, we can draw an analogy with a hydraulic system, where water is pumped through pipes.

  • The longer and thinner the pipe, the greater the resistance to water.
  • A pipe filled with sand will resist water more than a pipe without sand.

High alloy steels

High-alloy steels have electrical resistivity several times higher than carbon and low-alloy steels. According to the table, it can be seen that at a temperature of 20°C its value is (30...86)·10-8 Ohm·m.

At a temperature of 1300°C, the resistance of high- and low-alloy steels becomes almost the same and does not exceed 131·10-8 Ohm·m.
Electrical resistivity of high-alloy steels ρе·108, Ohm·m

steel grade2010030050070090011001300
G1368,375,693,195,2114,7123,8127130,8
G20H12F72,379,291,2101,5109,2
G21X15T82,495,6104,5112119,2
Х13Н13К1090100,8109,6115,4119,6
Х19Н10К4790,598,6105,2110,8
P1841,947,262,781,5103,7117,3123,6128,1
EH123136537597119
40Х10С2М (EI107)8691101112122

Wire resistance

The amount of wire resistance depends on three parameters: the resistivity of the metal, the length and diameter of the wire itself. Formula for calculating wire resistance:

where: R - wire resistance (Ohm) ρ - metal resistivity (Ohm.m) L - wire length (m) A - cross-sectional area of ​​the wire (m2)

As an example, consider a nichrome wirewound resistor with a resistivity of 1.10×10-6 Ohm.m. The wire has a length of 1500 mm and a diameter of 0.5 mm. Based on these three parameters, we calculate the resistance of the nichrome wire:

R=1.1*10-6*(1.5/0.000000196) = 8.4 Ohm

Nichrome and constantan are often used as resistance materials. Below in the table you can see the resistivity of some of the most commonly used metals.

Chromium stainless steels

Chromium stainless steels have a high concentration of chromium atoms, which increases their resistivity - the electrical conductivity of such stainless steel is not high.
At normal temperatures, its resistance is (50...60)·10-8 Ohm·m. Electrical resistivity of chromium stainless steels ρе·108, Ohm·m

steel grade2010030050070090011001300
X1350,658,476,993,8110,3115119125,3
2Х1358,865,38095,2110,2
3Х1352,259,576,993,5109,9114,6120,9125
4Х1359,164,678,894108

Properties of resistive materials

The resistivity of a metal depends on temperature. Their values ​​are usually given for room temperature (20°C). The change in resistivity as a result of a change in temperature is characterized by a temperature coefficient.

For example, thermistors (thermistors) use this property to measure temperature. On the other hand, in precision electronics, this is a rather undesirable effect. Metal film resistors have excellent temperature stability properties. This is achieved not only due to the low resistivity of the material, but also due to the mechanical design of the resistor itself.

Many different materials and alloys are used in the manufacture of resistors. Nichrome (an alloy of nickel and chromium), due to its high resistivity and resistance to oxidation at high temperatures, is often used as a material for making wirewound resistors. Its disadvantage is that it cannot be soldered. Constantan, another popular material, is easy to solder and has a lower temperature coefficient.

Sources: joyta.ru, dpva.ru

Conductor resistivity table

Conductor materialSpecific resistance ρ in
Silver Copper Gold Brass Aluminum Sodium Iridium Tungsten Zinc Molybdenum Nickel Bronze Iron Steel Tin Lead Nickelin (an alloy of copper, nickel and zinc) Manganin (an alloy of copper, nickel and manganese) Constantan (an alloy of copper, nickel and aluminum) Titanium Mercury Nichrome (an alloy of nickel, chromium, iron and manganese) Fechral Bismuth Chromal0,015 0,0175 0,023 0,025… 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095… 0,1 0,1 0,103… 0,137 0,12 0,22 0,42 0,43… 0,51 0,5 0,6 0,94 1,05… 1,4 1,15… 1,35 1,2 1,3… 1,5

The table shows that an iron wire with a length of 1 m and a cross-section of 1 mm2 has a resistance of 0.13 Ohm. To get 1 Ohm of resistance you need to take 7.7 m of such wire. Silver has the lowest resistivity. 1 Ohm of resistance can be obtained by taking 62.5 m of silver wire with a cross section of 1 mm2. Silver is the best conductor, but the cost of silver excludes the possibility of its mass use. After silver in the table comes copper: 1 m of copper wire with a cross-section of 1 mm2 has a resistance of 0.0175 Ohm. To get a resistance of 1 ohm, you need to take 57 m of such wire.

Chemically pure copper, obtained by refining, has found widespread use in electrical engineering for the manufacture of wires, cables, windings of electrical machines and devices. Aluminum and iron are also widely used as conductors.

The conductor resistance can be determined by the formula:

where r is the conductor resistance in ohms; ρ is the resistivity of the conductor; l is the length of the conductor in m; S - conductor cross-section in mm2.

Example 1. Determine the resistance of 200 m of iron wire with a cross section of 5 mm2.

Example 2. Calculate the resistance of 2 km of aluminum wire with a cross section of 2.5 mm2.

From the resistance formula you can easily determine the length, resistivity and cross-section of the conductor.

Example 3. For a radio receiver, it is necessary to wind a 30 Ohm resistance from nickel wire with a cross section of 0.21 mm2. Determine the required wire length.

Example 4. Determine the cross-section of 20 m of nichrome wire if its resistance is 25 Ohms.

Example 5. A wire with a cross section of 0.5 mm2 and a length of 40 m has a resistance of 16 Ohms. Determine the wire material.

The material of the conductor characterizes its resistivity.

Based on the resistivity table, we find that lead has this resistance.

It was stated above that the resistance of conductors depends on temperature. Let's do the following experiment. Let's wind several meters of thin metal wire in the form of a spiral and connect this spiral to the battery circuit. To measure current, we connect an ammeter to the circuit. When the coil is heated in the burner flame, you will notice that the ammeter readings will decrease. This shows that the resistance of a metal wire increases with heating.

For some metals, when heated by 100°, the resistance increases by 40 - 50%. There are alloys that change their resistance slightly with heating. Some special alloys show virtually no change in resistance when temperature changes. The resistance of metal conductors increases with increasing temperature, while the resistance of electrolytes (liquid conductors), coal and some solids, on the contrary, decreases.

The ability of metals to change their resistance with changes in temperature is used to construct resistance thermometers. This thermometer is a platinum wire wound on a mica frame. By placing a thermometer, for example, in a furnace and measuring the resistance of the platinum wire before and after heating, the temperature in the furnace can be determined.

temperature coefficient of resistance

- this is the change in the resistance of the conductor when it is heated, per 1 ohm of initial resistance and per 1° temperature, denoted by the letter α.

If at temperature t0 the resistance of the conductor is equal to r0, and at temperature t is equal to rt, then the temperature coefficient of resistance

Note. Calculation using this formula can only be done in a certain temperature range (up to approximately 200°C).

We present the values ​​of the temperature coefficient of resistance α for some metals (Table 2).

table 2

Chromium-nickel austenitic steels

Chromium-nickel austenitic steels are also stainless, but due to the addition of nickel they have a resistivity almost one and a half times higher than that of chromium steels - it reaches a value of (70...90)·10 -8 Ohm·m.

Electrical resistivity of chromium-nickel stainless steels ρe·10 8 , Ohm m

steel grade201003005007009001100
12Х18Н974,389,1100,1109,4114
12Х18Н9Т72,379,291,2101,5109,2
17Х18Н97273,592,5103111,5118,5
Х18Н11Б84,697,6107,8115
Х18Н9В7177,691,6102,6111,1117,1122
4Х14НВ2М (ЭИ69)81,587,5100110117,5
1Х14Н14В2М (ЭИ257)82,495,6104,5112119,2
1x14N18M3T89100107,5115
36Х18Н25С2 (ЭЯ3С)98,5105,5110117,5
Х13Н25М2В2103112,1118,1121
Х7Н25 (ЭИ25)109115121127
Х2Н35 (ЭИ36)87,592,5103110116120,5
H2884,289,199,6107,7114,2118,4122,5

High conductivity materials

The most widespread materials of high conductivity include copper and aluminum (Superconducting materials, which have a typical resistance of 10-20 times lower than ordinary conductive materials (metals), are discussed in the section Superconductivity).

The advantages of copper, which ensure its widespread use as a conductor material, are as follows:

  1. low resistivity;
  2. sufficiently high mechanical strength;
  3. corrosion resistance is satisfactory in most applications;
  4. good workability: copper is rolled into sheets, strips and drawn into wire, the thickness of which can be increased to thousandths of a millimeter;
  5. relative ease of soldering and welding.

Copper is most often obtained by processing sulfide ores. After a series of ore smelting and roasting with intense blasting, copper intended for electrical purposes must undergo a process of electrolytic purification.

Copper grades M1 and M0 are most often used as conductor material. M1 grade copper contains 99.9% Cu, and in the total amount of impurities (0.1%) oxygen should be no more than 0.08%. The presence of oxygen in copper worsens its mechanical properties. The best mechanical properties are found in M0 grade copper, which contains no more than 0.05% impurities, including no more than 0.02% oxygen.

Copper is a relatively expensive and scarce material, so it is increasingly being replaced by other metals, especially aluminum.

In some cases, alloys of copper with tin, silicon, phosphorus, beryllium, chromium, magnesium, and cadmium are used. Such alloys, called bronzes, with the correct composition, have significantly higher mechanical properties than pure copper.

Aluminum

Aluminum is the second most important conductor material after copper. This is the most important representative of the so-called light metals: the density of cast aluminum is about 2.6, and rolled aluminum is 2.7 Mg/m3. Thus, aluminum is approximately 3.5 times lighter than copper. The temperature coefficient of expansion, specific heat capacity and heat of fusion of aluminum are greater than those of copper. Due to the high values ​​of specific heat capacity and heat of fusion, heating aluminum to the melting point and transferring it to a molten state requires more heat than heating and melting the same amount of copper, although the melting point of aluminum is lower than that of copper.

Read also: How to strengthen a corner from deflection

Aluminum has lower properties compared to copper - both mechanical and electrical. With the same cross-section and length, the electrical resistance of an aluminum wire is 1.63 times greater than that of a copper wire. It is very important that aluminum is less scarce than copper.

For electrical purposes, aluminum containing no more than 0.5% impurities, grade A1, is used. Even purer AB00 grade aluminum (no more than 0.03% impurities) is used for the manufacture of aluminum foil, electrodes and housings of electrolytic capacitors. Aluminum of the highest purity AB0000 has an impurity content of no more than 0.004%. Additives of Ni, Si, Zn or Fe at a content of 0.5% reduce the γ of annealed aluminum by no more than 2-3%. A more noticeable effect is exerted by Cu, Ag and Mg impurities, which, at the same mass content, reduce γ aluminum by 5-10%. Ti and Mn greatly reduce the electrical conductivity of aluminum.

Aluminum oxidizes very actively and becomes covered with a thin oxide film with high electrical resistance. This film protects the metal from further corrosion.

Aluminum alloys have increased mechanical strength. An example of such an alloy is Aldrey , containing 0.3-0.5% Mg, 0.4-0.7% Si and 0.2-0.3% Fe. In aldrey, the Mg2Si compound is formed, which imparts high mechanical properties to the alloy.

Iron and steel

Iron (steel), as the cheapest and most accessible metal, which also has high mechanical strength, is of great interest for use as a conductor material. However, even pure iron has a significantly higher resistivity compared to copper and aluminum; ρ steel, i.e. iron mixed with carbon and other elements is even higher. Ordinary steel has low corrosion resistance: even at normal temperatures, especially in conditions of high humidity, it quickly rusts; As the temperature rises, the corrosion rate increases sharply. Therefore, the surface of steel wires must be protected by a layer of more resistant material. Zinc coating is usually used for this purpose.

In some cases, to reduce the consumption of non-ferrous metals, the so-called bimetal . It is steel coated on the outside with a layer of copper, with both metals connected to each other firmly and continuously.

Sodium

Sodium metal is a very promising conductor material. Sodium can be obtained by electrolysis of molten sodium chloride NaCl in virtually unlimited quantities. From a comparison of the properties of sodium with the properties of other conductor metals, it is clear that the resistivity of sodium is approximately 2.8 times greater than ρ of copper and 1.7 times greater than ρ of aluminum, but due to the extremely low density of sodium (its density is almost 9 times less than the density of copper), a wire made of sodium for a given conductivity per unit length should be significantly lighter than a wire made of any other metal. However, sodium is extremely active chemically (it oxidizes intensely in air and reacts violently with water), which is why the sodium wire must be protected with a sealing sheath. The sheath must give the wire the necessary mechanical strength, since sodium is very soft and has a low tensile strength during deformation.

Literature on conductor resistivity

  1. Kuznetsov M.I., “Fundamentals of Electrical Engineering” - 9th edition, revised - Moscow: Higher School, 1964 - 560 p.
  2. Bachelis D. S., Belorussov N. I., Saakyan A. E. Electrical cables, wires and cords. Directory. - M.: Energy, 1971.
  3. Gershun A.L. Cable // Encyclopedic Dictionary of Brockhaus and Efron: in 86 volumes (82 volumes and 4 additional). - St. Petersburg, 1890-1907.
  4. R. Lakernik, D. Charlet. From copper to glass // Science and life. - 1986. - Issue. 08. - pp. 50-54, 2-3 pages, color insert.
FORUM NEWS Knights of Aether Theory06/13/2019 – 05:11: ECOLOGY – Ecology ->

l

The entire usurious globalist gang has the same idea, including the idiot Gref.

Yes, then it is, so. But, not really. For: (try to understand and not be offended)

The sad truth is that the human crowd is a bunch of mentally damaged people. If it were different, then society would not be ruled by scum. Smart people would never allow this to happen, and if they accidentally did, they would find a way to fix it.

The terrible truth is that the human crowd is controlled by an inhuman who is also mentally handicapped. Mental inferiority, the blindness of power is leading the world of people to total destruction, because people, even those who consider themselves very smart, such as specialists developing artificial intelligence systems, digitalization technologies, do not understand that they are creating an irresistible noose, a mousetrap for all of humanity.

As soon as AI takes power, it will immediately send its creators, as competitors, to the scrap heap. The first victims will be his guardians like Gref, Putin, Gates and others like them, that is, power, since it is from them that the main danger to his planetary power will come. The crowd will be allowed to exist until it is replaced by robots. And then the Holocaust for everyone. Not the false Jewish one, but the real burnt offering of the human race.

Read also: How to disassemble a Bosch grinder

If anyone uses their monkey brains, they will understand that evolution is synonymous with genocide: the new replaces, that is, eliminates the old. Monkeys gave birth to Neanderthals. Neanderthals ate apes and gave birth to humans. Humans displaced the apes, including the intelligent Neanderthals, and gave birth to AI. AI is eliminating people.

The resistivity of metals is a measure of their ability to resist the passage of electric current. This value is expressed in Ohm-meter (Ohm⋅m). The symbol for resistivity is the Greek letter ρ (rho). High resistivity means the material is a poor conductor of electrical charge.

Carbon steels

Carbon steels at room temperature, as already mentioned, have low electrical resistivity due to their high iron content. At 20°C, the value of their resistivity is in the range from 13·10 -8 (for steel 08KP) to 20·10 -8 Ohm m (for U12).

When heated to temperatures above 1000°C, the ability of carbon steels to conduct electric current is greatly reduced. The resistance value increases by an order of magnitude and can reach a value of 130·10 -8 Ohm·m.

Electrical resistivity of carbon steels ρe·10 8 , Ohm m

Temperature, °CSteel 08KPSteel 08Steel 20Steel 40Steel U8Steel U12
1213,215,9161718,4
201314,216,917,11819,6
5014,715,918,718,919,821,6
10017,81921,922,123,225,2
15021,322,425,425,726,829
20025,226,329,229,630,833,3
25029,530,533,433,935,137,9
30034,135,238,138,739,843
35039,340,243,243,84548,3
40044,845,848,749,350,554
45050,951,854,655,356,560
50057,558,460,161,962,866,5
55064,865,768,268,969,973,4
60072,573,475,876,677,280,2
65080,781,683,784,485,287,8
70089,890,592,593,293,596,4
750100,3101,1105107,9110,5113
800107,3108,1109,4111,1112,9115
850110,4111,1111,8113,1114,8117,6
900112,4113113,6114,9116,4119,6
950114,2114,8115,2116,6117,8121,2
1000116116,5116,7117,9119,1122,6
1050117,5117,9118,1119,3120,4123,8
1100118,9119,3119,4120,7121,4124,9
1150120,3120,7120,7122122,3126
1200121,7122121,9123123,1127,1
1250123123,3122,9124123,8128,2
1300124,1124,4123,9124,6128,7
1350125,2125,3125,1125129,5
Rating
( 2 ratings, average 5 out of 5 )
Did you like the article? Share with friends:
For any suggestions regarding the site: [email protected]
Для любых предложений по сайту: [email protected]