Повышающий трансформатор на электростанциях используется для

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Понижающие трансформаторы

Для отдельных приборов, используемых в быту, напряжение в 220В является излишним – для их подключения рекомендуется использовать понижающие трансформаторы (220 на 15 вольт или 220 на 10 вольт).

К преимуществам использования данных мини-трансформаторов для дома можно отнести:

  • защита от поражения электрическим током и возникновения возгорания (особенно актуально в банях, ванных комнатах и прочих помещения, обладающих повышенной влажностью);
  • экономия потребления электроэнергии (низковольтные осветительные приборы потребляют в разы меньше энергии, чем обычные);
  • продление срока службы приборов.

Зарядные устройства для телефонов, ноутбуков и прочих гаджетов уже имеют встроенные трансформаторы, а вот при монтаже низковольтного освещения с использованием светодиодных и галогенных ламп, требуется самостоятельная установка устройств для понижения напряжения.

Читайте также: Пустота, апатия после расставания

Итак, купить трансформатор для частного дома или дачи не составит трудностей, если внимательно изучить виды и предназначение различных типов устройств. Правильный выбор поможет обеспечить наличие требуемых для работы приборов мощностей без риска выхода техники из строя.

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).

При К>1 трансформатор является понижающим, а при К повышающий трансформатор схема

Как выполнить подключение

Подключение трансформаторов в параллельную работы допускается только при соблюдении всех перечисленных условий. Допускается возможность работы устройств с различными группами включения обмоток:

  • в группах с разницей 4 часа (120 гр.) производится круговая перестановка обмоток;
  • группы с разницей 6 часов (180 гр.), например 0, 4, 8 и 6, 10, 2, подключаются после смены мест начала и конца обмотки одного из трансформаторов;
  • в нечетных группах меняются местами две фазы на обмотках высокого и низкого напряжений.

Во всех случаях выполняют повторную фазировку обмоток.

Все работы по установке и коммутации выполняются при отсутствии высокого напряжения.

Как уменьшить выходное напряжение трансформатора?

  1. Поскольку большинство трансформаторов всегда представляют собой центральный ответвитель для двойного источника питания. …
  2. Первичный трансформатор 230/110 В переменного тока на вторичный трансформатор 9–0–9 В, 1 А. …
  3. Обычно мы можем легко применить его как выход 18 В, 1 А без использования клеммы CT.
  4. Кроме того, мы можем использовать его как 9V 2A, поскольку обе катушки соединяются параллельно.

Полезные советы Схемы для подключения Принципы работы устройств Главные понятия Счетчики от Энергомера Меры предосторожности Лампы накаливания Видеоинструкции для мастера Проверка мультиметром

Разновидности

К категории повышающих разновидностей техники относится ряд устройств, отличающихся конструкцией, назначением, техническими характеристиками:

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Откуда он появился

В начале XIX века ученые изучали свойства магнитного поля. И экспериментально было показано, что переменное магнитное поле способно создавать ток: его фиксировали приборами на проводнике. При этом долгое время никто не измерял его величину.

К середине того же века были изучены свойства ферромагнетиков и параметры магнитного поля, появился даже прообраз трансформатора — катушка Румкорфа. Наконец, в 1876 году русский ученый П. Н. Яблочков запатентовал первый в мире стержневой трансформатор.

Чуть позже в Англии стали производить первые трансформаторы с замкнутым сердечником, которые и стали прообразом почти всех современных устройств этого типа. Все дальнейшие работы велись в направлении усовершенствования, и основывались они на изучении эксплуатационных свойств этого устройства. Так, были введены сердечники из слоистого материала, масляное охлаждение. В СССР распространение трансформаторов шло вместе с электрификацией всей страны, с конца 20-х годов прошлого века.

Звонковый трансформатор — параметры и применение

Звонковые трансформаторы преследуют одну цель — снизить напряжение сети до уровня, подходящего для дома или конкретного устройства. Это делается для того, чтобы колокол можно было разместить снаружи, например, на заборе, где из-за высокой влажности или возможности разбрызгивания увеличивается риск поражения электрическим током. При низких напряжениях это не опасно.

Параметры колокольных трансформаторов особо не меняются, но выбор часто сильно ограничен техническими проблемами.

  • Выходное напряжение и выходной ток. Их уровень определяется путем проверки требований к звонкам. В настоящее время относительно редко используются колокольные трансформаторы с напряжением более 8 В. 12 В — это уровень, необходимый для больших, сложных дверных звонков или домофонов. В обоих случаях это абсолютно безопасное напряжение. Многие колокольные трансформаторы имеют несколько выводов, комбинации которых позволяют получать различные выходные напряжения (например, 4, 8 или 12 В);
  • Способ монтажа. Во многих старых электропроводках все еще установлено несколько или несколько десятков трансформаторов. В техническом плане они обычно эффективны, хотя эффективность, уровень безопасности и эстетика оставляют желать лучшего. Эти трансформаторы устаналивались непосредственно на стене, но сегодня это решение практически не используют. В настоящее время застройщики предпочитают устанавливать трансформаторы для шины Т-35. Трансформатор на DIN-рейке может быть установлен без дополнительных отверстий в конструкции и является более универсальным;
  • Безопасность. В этом отношении различия невелики, поскольку стандартом является защита от перегрева и перегрузки, но в каждом случае стоит обратить внимание на предложение отдельных производителей.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

  • П-образные.
  • Ш-образные.
  • Тороидальные.

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Рабочий процесс изготовления каркасов катушек

Катушка трансформатора.

При применении круглого сердечника его предварительно обматывают ленточной изоляцией и затем прямо начинают мотать на него провод, распределяя нужное количество витков по всему кольцу.

После того как закончена намотка первичной обмотки, ее закрывают 3-4 слоями лакоткани и затем сверху начинают накручивать витки вторичной ее части. При использовании обычных магнитопроводов каркас катушек делают так:

  • делается выкройка гильзы с отворотами на сторонах торцов;
  • из картона вырезают щечки;
  • свертывают тело катушки по намеченным линиям в небольшую коробочку и заклеивают;
  • надевают на гильзу верхние части (щечки) и, отогнув отвороты, приклеивают.

После этого ленточной изоляцией закрывают провод, предварительно выведя наружу концы обмоток.

Как снизить напряжение без трансформатора?

Без трансформатора вы можете понизить напряжение, используя резистивный делитель напряжения (нагрузка может быть частью одного из резисторов), выпрямить напряжение до постоянного тока и использовать регулятор или и то, и другое. Напряжение можно увеличивать ТОЛЬКО при преобразовании в постоянный ток с помощью умножителя напряжения.

Все, что вам нужно сделать, это подключить первичную обмотку к сетевой вилке, как обычно, затем проложить другой провод с горячей стороны первичной обмотки и присоединить его к нейтральной вторичной клемме. Нагрузка (ваш проект) подключена к нейтральной стороне первичной обмотки и к клемме горячей вторичной обмотки вашего трансформатора.

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Re: Повышение мощности усилителя без перемотки трансформатора При увеличении нагрузки ток увеличивается при том же напряжении, при дальнейшем увеличении нагрузки ток будет увеличиваться соответственно при том же напряжении. Спрашивайте, я на связи!

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Виды силовых трансформаторов

Силовые трансформаторы можно разделить на несколько видов, основываясь на следующих характеристиках и показателях:

  • Тип охлаждения. Различают сухие и масляные трансформаторы. Первый вариант имеет воздушное охлаждение, используется там, где повышены требования к экологии и пожаробезопасности. Второй вариант представляет собой корпус, заполненный маслом с диэлектрическими свойствами, в который погружен сердечник с обмотками;
  • Климатическое исполнение: наружные и внутренние варианты;
  • Количество фаз. Бывают трехфазные (наиболее распространенные) и однофазные;
  • Количество обмоток. Различают двухобмоточные и многообмоточные варианты;
  • Назначение: повышающие и понижающие.

Дополнительным критерием служит наличие или отсутствие регулятора выходного напряжения.

Технологическое присоединение к электрическим сетям

  • Калькулятор необходимой мощности — примерный расчет потребности в электрической мощности для подачи заявки на технологическое присоединение;
  • Калькулятор стоимости — примерный расчет стоимости технологического присоединения к электрическим сетям в зависимости от типа присоединения (существующее или новое);
  • Этапы присоединения — подробное описание основных этапов, необходимых для осуществления технологического присоединения к электрическим сетям;
  • Ответы ОАО «Ленэнерго» на часто задаваемые вопросы по технологическому присоединению дополнительной мощности или новой мощности и заключению договора энергоснабжения.

Принцип работы повышающего трансформатора

Повышающий трансформатор работает по тому же принципу, что и обычный трансформатор. Повышающие трансформаторы потребляют более низкое напряжение и обеспечивают более высокое напряжение. Их работа основана на законах Фарадея и теории коэффициента поворота.

Внутри повышающего трансформатора ток течет из-за входного напряжения. Протекание тока индуцирует магнитный поток вокруг обмоток, и этот поток проходит через сердечник трансформатора.

Напряжение во вторичных обмотках индуцируется вторичной обмоткой.

Следующий принцип работы — коэффициент поворота. Передаточное число выражается как отношение числа витков первичной обмотки к коэффициенту витков вторичной обмотки. Он также описывается как отношение входного напряжения к выходному напряжению.

Коэффициент оборотов = Nпервичный/Nвторичный =Vпервичный/Vвторичный ———————- (i)

Или, Vsecondary = Vprimary * (Nsecondary / Nprimary) ——————— (ii)

Здесь Nprimary = количество витков первичной обмотки.

Nsecondary = Количество витков вторичной обмотки

Vprimary = напряжение первичной стороны

Vsecondary = Напряжение вторичной стороны

Используя отмеченное уравнение (ii), мы пытаемся вычислить вторичное напряжение. Понятно, что входное напряжение постоянно. Теперь, изменив коэффициент трансформации, мы можем получить желаемое выходное напряжение. Повышающий трансформатор используется для создания более высокого напряжения на выходе. Вот почему соотношение (Nsecondary / Nprimary) установлено больше 1.

Теперь из уравнений мы можем заметить, что вторичный N будет больше в отличие от понижающего трансформатора. Поэтому повышающий трансформатор имеет большее количество витков во вторичных обмотках.

Узнайте, как работает трансформатор. Щелкните здесь для навигации!

Расчеты параметров

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

Будет интересно➡ Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

N = 40-60 / S, где S – площадь сечения сердечника в см2. Константа 40-60 зависит от качества металла сердечника. Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм2, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом. Расположение в пространстве стержней служит для разделения системы на следующие виды.


Виды расположения стержней.

Читайте также: Почему полутерок больше, чем терка?

Количество витков первичной обмотки

Берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности. Рассчитаем высоту каркаса с обмотками.

Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.


Процесс намотки катушки трансформатора.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм. Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм. Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

Читайте также: Для чего нужна канифоль при пайке

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Обслуживание и ремонт

Повышающие трансформаторы относятся к технически сложным устройствам, поэтому самостоятельное исправление поломок крайне не рекомендуется.


Единственное, что может быть выполнено своими руками — это перемотка обмоток устройства.
Рассмотрим в качестве примера тот тип, в котором используется многократная обмотка. В данном агрегате располагается магнитный сердечник, который является общим для всех трех катушек индуктивности. Как правило, одна катушка является понижающей, а вторая повышающей в данном устройстве.

Не лишним будет узнать порядок проверки трансформаторов, что позволит избежать вероятных проблем в дальнейшем. Рассмотрим всю процедуру поэтапно:

  1. Сперва необходимо осмотреть весь блок. Как правило, перегрев системы провоцирует появление некоторых выпуклостей или неровностей, которые говорят о деформации некоторых деталей.
  2. Определяем вход и выход устройства. Первый контур должен быть подключен к первой катушке устройства, где формируется само магнитное поле. Вторая часть, которая выступают в роли получателя энергии от магнитного поля, должна быть состыкована со вторичной обмоткой.
  3. Затем нужно определить фильтрацию выходного сигнала. Примечательно, что она является идентичной для диодов и конденсаторов на второй катушке устройства.
  4. Далее нужно снять некоторые части корпуса, чтобы был полный доступ к микросхемам устройства. Это нужно для того, чтобы можно было определить показатели напряжения при помощи мультиметра.
  5. Если полученные показатели оказываются существенно меньше ожидаемых (менее 80% от оптимальных), то вероятная причина поломки кроется во всей цепи, которая соединяется вокруг первичной обмотки. Для исправления причин, следует отсоединить первую катушку от подачи на нее электричества.
  6. Далее нужно проверить вторичный выход. Если фильтрация отсутствует, то нужно использовать питание от мультиметра. Если вы заметили, что оптимальное напряжение не достигается, то причина может быть в самом трансформаторе, либо в выходных клеммах.

Вообще, все эти манипуляции лучше доверить соответствующему специалисту, который не только корректно разберет и соберет устройство, но и проверит показатели частоты напряжения на отдельных участках схем первичной и вторичной обмотки.

Виды изделий

Сейчас мы опишем некоторую часть этих преобразователей и особенности их конструкции.

Силовой преобразователь

Это устройство, работающее в сетях и служащее для повышения или понижения напряжения в процессе электропередачи. В крупных энергосистемах напряжение, вырабатываемое электростанцией, сперва повышают до нескольких сотен вольт (а то и до мегавольта), чтобы уменьшить потери при передаче. Затем уже в регионах ставят понижающие трансформаторы, и таким образом в несколько приемов электроэнергия доходит до вашей квартиры. Последний трансформатор, который стоит перед вашим домом, понижает напряжение с 10 кВ до 220 В.

Поскольку линии передач у нас трехфазные, со сдвигом 120 градусов, то в вашей дворовой будке стоят три катушки, и напряжение между вторичными обмотками двух любых из них составляет 400 (по факту со включенными нагрузками — 380) вольт. А между любой из фаз и нейтралью — 220. Поэтому на двери подстанции и значится «10 кВ/400 В/220 В». Выпускаются такие изделия стержневого и броневого типов.

Также понижающий трансформатор стоит в ряде устройств бытовой техники, где 220 В преобразует в 12.

Измерительные трансформаторы

Их можно встретить на больших подстанциях и предприятиях энергоснабжения. Применяются они для измерения параметров высоковольтных сетей, поскольку измерительную аппаратуру при высоком напряжении подключить попросту невозможно. Принципиально они не отличаются от силовых, все дело в режиме работы и схеме подключения.

Для точности измерений такие трансформаторы включают в сеть таким образом, чтобы они оказывали как можно меньшее влияние на измеряемые показатели.

Поскольку эти устройства предназначены для замеров соответствующих параметров, к ним предъявляются определенные требования по классу точности. Измерения происходят в масштабе, и если отклонения во вторичной обмотке будут и невелики, то в первичной они будут выше во много раз — то есть их нужно умножить на коэффициент трансформации. Поэтому такие трансформаторы подлежат регулярным проверкам.

Импульсные варианты

Предназначены для преобразования напряжения и тока, имеющих импульсный (не синусоидальный) график изменения. Задача такого элемента в цепи заключается в том, чтобы передать импульс без искажения его формы, что довольно сложно, если вспомнить о паразитных индуктивностях и емкостях, а также о свойствах сердечника. Поэтому при расчете таких трансформаторов особое внимание уделяют именно последнему — он должен обладать хорошей индуктивностью и при этом не стать причиной «размазывания» сигнала.

Говоря об импульсных электротрансформаторах, нельзя не упомянуть о пик-трансформаторах, задача которых — преобразовать синусоидальный сигнал в импульсный. Чтобы этого достичь, пользуются двумя методами:

  1. в первичную обмотку последовательно ставят большое сопротивление;
  2. между обмотками ставят магнитный шунт.

И в том, и в другом случае упор делается на изменение характеристик магнитного потока, изменение которого и определяет форму сигнала во вторичной обмотке.

Сварочные устройства

Это — разновидность понижающего, и причиной конструктивных отличий этого преобразователя от остальных является режим его эксплуатации. Если простой трансформатор работает под нагрузкой, то сварочный — на коротком замыкании. Соответственно, он должен выдерживать высокие токи, которые протекают по его вторичной обмотке. Ток, конечно, стараются минимизировать, поставив обмотки подальше друг от друга, но сама суть процесса дуговой сварки тока требует. Поэтому сечение провода во вторичной обмотке делается большим, а кабели, которые сварщики за собой таскают, хорошо изолированы.

Автотрансформаторы

Это не классические преобразователи: в них нет разделения на первичную и вторичную обмотку в прямом смысле слова, они соединены друг с другом напрямую.

Изменение напряжения достигается путем изменения числа витков. Чаще всего у таких устройств есть третий вывод, а в некоторых случаях они имеют регулировку.

Автотрансформаторы нашли свое применение там, где большой коэффициент трансформации не нужен, например, в стабилизаторах. Они в определенных пределах позволяют подогнать напряжение под норматив, требуемый нагрузкой.

В настоящее время часто встречаются в лабораториях и, как ни странно, на железной дороге. Подобная схема обеспечивает бесперебойность питания на длинных дистанциях пути при минимуме потерь.

Это далеко не все разновидности этого преобразователя как по конструкции, так и по назначению. Писать о применении трансформатора можно долго: он занял свое прочное место в электроэнергетике и радиоэлектронике уже давно. А пока мы лучше разберемся с его устройством.

Изготовление обмоток

Катушку надевают на деревянный брусок с размерами стержня магнитопровода. В нем предварительно сверлится отверстие для прутка намоточного. Эта деталь вставляется в станок, и начинается процесс изготовления обмотки:

  • на катушку наматывают 2 слоя лакоткани;
  • один конец провода закрепляют на щечке и начинают медленно вращать ручку станка;
  • витки надо укладывать плотно, изолируя каждый намотанный слой от соседнего лакотканью;
  • после того как намотана катушка первичной обмотки, провод обрезают и второй его конец закрепляют на щечке рядом с первым.

На оба вывода надевают изоляционные трубки, а снаружи обмотку закрывают изоляцией. В такой же последовательности производится намотка катушки вторичной обмотки.

Что такое режим холостого хода

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.


Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Ремонт и обслуживание

Трансформатором называется сложное оборудование. Периодически потребуется проводить его обслуживание и ремонт. Доверить эту работу рекомендуется профессионалам. Только человек с соответствующей подготовкой имеет право проводить подобные работы.

При повышенной скорости нагрева, наличии шума, требуется произвести перемотку контуров трансформатора. Эту процедуру сможет выполнить неквалифицированный специалист, обладающий минимальным уровнем знаний в области работы электротехники.

Прибор имеет магнитопривод. Он является общим для катушек. Первый контур ответственен за понижение, а второй – за повышение электричества в сети. Осмотр трансформатора производится по определенной технологии.

Проверка

Сначала проводится визуальный осмотр блока. Если при работе наблюдается перегрев, на поверхности появляются деформации, неровности, вздутие изоляции. Если осмотр не выявил отклонений, нужно найти вход и выход прибора. Первый из них подведен к первой катушке. Здесь появляется магнитное поле в момент подачи электричества. Вывод подведен ко вторичной обмотке.

Выходной сигнал фильтруется. Этот показатель нужно замерять. Снимаются разборные части конструкции корпуса. Требуется получить доступ к микросхемам. Это позволит замерять напряжение мультиметром. При этом потребуется учесть номинальные показатели. Если результат замеров окажется меньше 80 % от заданного производителем значения, цепь первичной не функционирует правильно.

Первую катушку отсоединяют от прибора. На нее больше не поступает электричество. Затем проверяется вторичный контур. При отсутствии фильтрации используется питание от измерительного прибора. При отсутствии нормального напряжения в системе, аппаратура требует ремонта.

После проверки в случае исправности составляющих элементов, конструкция собирается обратном порядке. При необходимости проводится ремонт агрегата.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]