Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:
- износостойкость металла;
- возможность обработки резанием, шлифованием;
- сопротивляемость местному давлению;
- способность резать другой материал и прочие.
На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.
В чем измеряется и как обозначается твердость
Для большинства методов измерения твердости основная единица измерения — кгс/мм2
Однако следует понимать, есть методы со своей единицей.
Обозначение твердости так же зависит от метода.
Буквой «H» всегда обозначают «твердость (от англ. Hardness), а далее указывают буквы, обозначающие метод определения. Наиболее популярные обозначения:
- HB – по методу Бринеля (вдавливание шарика из стали)
- HRA – по методу Роквелла, шкале A (вдавливание алмазного или стального конуса)
- HRB – по методу Роквелла, шкале B
- HRC – по методу Роквелла, шкале C
- HV – по методу Викерса (вдавливание алмазной пирамиды)
- HSD – твердость по Шору и тп. (метод отскока)
Единицы измерения твердости
Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.
Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.
Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:
- сплавы железа – 30 кгс/мм²;
- медь и никель – 10 кгс/мм²;
- алюминий и магний – 5 кгс/мм².
Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.
Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.
В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.
Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.
Методика отображает тип индентора и прилагаемую к нему нагрузку.
Тип шкалы | Инструмент | Прилагаемая нагрузка, кгс |
А | Конус из алмаза, угол вершины которого 120° | 50-60 |
В | Шарик 1/16 дюйма | 90-100 |
С | Конус из алмаза, угол вершины которого 120° | 140-150 |
В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.
Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.
Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.
К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:
Н□ 0,195 = 2800, где
□ — форма наконечника;
0,196 — нагрузка на наконечник, Н;
2800 – численное значение твердости, Н/мм².
Какие требования предъявляются к изделию для измерения
Твердость прямопропорциональна нагрузке для ее определения. Высокая твердость – высокая нагрузка.
Чем точнее метод, тем выше требования к подготовке поверхности изделия. Поверхность изделия, на которой определяется твердость, должна отвечать ряду требований:
- Толщина образца должна быть не менее чем в 10 раз превышать глубину внедрения наконечника после снятия основного усилия.
- В месте контроля она должна быть зачищена до блеска, быть ровной и плоской, не должна иметь окалины, ржавчины, масложировых и лакокрасочных загрязнений, выбоин и царапин. Шероховатость Ra не более 2,5мкм по ГОСТ 2789, если нет других требований нормативно-технической документации.
- Поверхность, которой образец «ложится» на предметный столик прибора также должна быть чистой и ровной. Обе поверхности должны быть параллельны друг другу.
- Изделие необходимо надежно закрепить, исключая возможность смещения образца относительно оси приложения нагрузки.
Перевод единиц твердости по Роквеллу, Бринеллю и Виккерсу (таблица)
SVERLA.info » Статьи » Твердость — перевод единиц
Роквелл | Бринелль | Виккерс | Шор | На разрыв | ||
HRA | HRC | HB (3000H) | Диаметр отпечатка, мм | HV | HSD | Н/мм² |
89 | 72 | 782 | 2.20 | 1220 | ||
86.5 | 70 | 1076 | 101 | |||
86 | 69 | 744 | 2.25 | 1004 | 99 | |
85.5 | 68 | 942 | 97 | |||
85 | 67 | 713 | 2.30 | 894 | 95 | |
84.5 | 66 | 854 | 92 | |||
84 | 65 | 683 | 2.35 | 820 | 91 | |
83.5 | 64 | 789 | 88 | |||
83 | 63 | 652 | 2.40 | 763 | 87 | |
82.5 | 62 | 739 | 85 | |||
81.5 | 61 | 627 | 2.45 | 715 | 83 | |
81 | 60 | 695 | 81 | 2206 | ||
80.5 | 59 | 600 | 2.50 | 675 | 80 | 2137 |
80 | 58 | 2.55 | 655 | 78 | 2069 | |
79.5 | 57 | 578 | 636 | 76 | 2000 | |
79 | 56 | 2.60 | 617 | 75 | 1944 | |
78.5 | 55 | 555 | 598 | 74 | 1889 | |
78 | 54 | 2.65 | 580 | 72 | 1834 | |
77.5 | 53 | 532 | 562 | 71 | 1772 | |
77 | 52 | 512 | 2.70 | 545 | 69 | 1689 |
76.5 | 51 | 495 | 2.75 | 528 | 68 | 1648 |
76 | 50 | 513 | 67 | 1607 | ||
75.5 | 49 | 477 | 2.80 | 498 | 66 | 1565 |
74.5 | 48 | 460 | 2.85 | 485 | 64 | 1524 |
74 | 47 | 448 | 2.89 | 471 | 63 | 1496 |
73.5 | 46 | 437 | 2.92 | 458 | 62 | 1462 |
73 | 45 | 426 | 2.96 | 446 | 60 | 1420 |
72.5 | 44 | 415 | 3.00 | 435 | 58 | 1379 |
71.5 | 42 | 393 | 3.08 | 413 | 56 | 1317 |
70.5 | 40 | 372 | 3.16 | 393 | 54 | 1255 |
38 | 352 | 3.25 | 373 | 51 | 1193 | |
36 | 332 | 3.34 | 353 | 49 | 1138 | |
34 | 313 | 3.44 | 334 | 47 | 1076 | |
32 | 297 | 3.53 | 317 | 44 | 1014 | |
30 | 283 | 3.61 | 301 | 42 | 965 | |
28 | 270 | 3.69 | 285 | 41 | 917 | |
26 | 260 | 3.76 | 271 | 39 | 869 | |
24 | 250 | 3.83 | 257 | 37 | 834 | |
22 | 240 | 3.91 | 246 | 35 | 793 | |
20 | 230 | 3.99 | 236 | 34 | 752 |
Вдавливание алмазного конуса с углом 120° при вершине и замер относительной глубины погружения в исследуемый материал.
Шкала А — нагрузка 60 кгс, для карбида вольфрама (ВК)
Шкала С — нагрузка 150 кгс, для твердых сталей HRB>100
Преимущество — простота. Недостаток — низкая точность.
Твердость по Бринеллю
Диаметр отпечатка металлического шарика в материале.
Недостаток — твердость до 450HB.
Твердость по Виккерсу
Площадь отпечатка от алмазной пирамидки.
Твердость по Шору
Отскок шарика от поверхности в склероскопе (метод отскока). Очень простой и удобный метод.
Определение твердости материала является важной частью технологического процесса изготовления деталей любой сложности.
Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы. Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину.
Лишь с помощью метода Виккерса удобнее всего искать твёрдость азотированных и цементированных поверхностей.
Расчет ресурса работы металлорежущего инструмента, его долговечность, всегда производится в первую очередь с учетом табличных показателей.
Именно благодаря повышенной твердости (около 71 HRC) твердосплавные сверла и фрезы из сплава ВК8 позволяют обрабатывать сверхтвердые материалы.
Какие существуют методы определения твердости
Условно все методы можно разделить на 3 группы:
- Методы вдавливания (внедрения)
- Методы царапания
- Методы упругого отскока
Методы вдавливания (внедрения). Смысл методов заключается во вдавливании в испытуемый металл так называемого индентора – твердого предмета определенной формы (обычно стального шарика или алмазной пирамиды) с определенным усилием. После вдавливания замеряется диаметр (для шарика) или глубина (для пирамиды) полученного отпечатка.
В этом случае твердость определяется как отношение величины нагрузки к площади отпечатка после вдавливания.
Наиболее распространенными являются методы Бринеля (HB) и Роквелла (HRA, HRB, HRC).
Методы измерения толщины вдавливанием:
- Прибор Бринеля
- Прибор Роквелла
- Прибор Виккерса
- Метод Лудвика
- Метод Герца
- Метод Дрозда
- Монотрон Шора
- Метод Берковича
- Метод Егорова
- Метод Хрущова
- Метод Лидса
- Микротвердомер Цейсса-Ганеманна
- ПМТ-2, ПМТ3 (Хрущов, Беркович)
- Метод Эмерсона, Кнупа, Петерса
Методы царапания. Простые методы. Если наконечник, которым производится царапина, оставляет след на испытуемом металле, то твердость металла меньше твердости наконечника. При этом твердости наконечника изначально известны (используются корундовые, алмазные, гипсовые и др. наконечники). Наиболее популярен метод Мооса.
Методы царапания:
- Испытание по Моосу
- Прибор Мартенса
- Микрохарактеризатор Бирбаума
- Испытание напильником, Барба
- Прибор Хенкинса
- ПМТ-3 (Беркович)
- ПМТ-3 (Григорович)
- Склерометр О’Нейля
Методы упругого отскока. Редко используются. На испытуемую поверхность с фиксированной высоты свободно падает боек. Под действием упругой отдачи материала боек отскакивает на определенную высоту. Твердость материала пропорциональна высоте отскока. Наиболее популярен метод Шора.
Методы упругого отскока:
- Склероскоп Шора
- Метод Мартеля
- Вертикальный копер Николаева
- Пружинный прибор Шоппера
- Пружинный прибор Баумана
- Прибор Польди
- Маятниковый копер Вальцеля
- Маятник Герберта
- Маятниковый склерометр Кузнецова
Твердость металлов. Таблица твердости металлов
Для того чтобы детали и механизмы служили длительно и надежно, материалы, из которых они изготовлены, должны соответствовать необходимым условиям работы.
Именно поэтому важно контролировать допустимые значения их основных механических показателей. К механическим свойствам относятся твердость, прочность, ударная вязкость, пластичность.
Твердость металлов — первичная конструкционная характеристика.
Понятие
Твердость металлов и сплавов — это свойство материала создавать сопротивление при проникновении в его поверхностные слои иного тела, которое не деформируется и не разрушается при сопутствующих нагрузках (индентора). Определяют с целью:
- получения информации о допустимых конструкционных особенностях и о возможностях эксплуатации;
- анализа состояния под действием времени;
- контроля результатов температурной обработки.
От этого показателя частично зависят прочность и устойчивость поверхности к старению. Исследуют как исходный материал, так и уже готовые детали.
Варианты исследования
Показателем является величина, которая называется числом твердости. Существуют различные методы измерения твердости металлов. Наиболее точные исследования заключаются в использовании различных видов вычисления, инденторов и соответствующих твердомеров:
- Бринелля: суть работы аппарата – вдавливание шарика в исследуемый металл или сплав, вычисление диаметра отпечатка и последующее математическое вычисление механического параметра.
- Роквелла: используются шарик или алмазный конусный наконечник. Значение отображается на шкале или определяется расчётно.
- Виккерса: наиболее точное измерение твердости металла с применением алмазного пирамидального наконечника.
Для определения параметрических соответствий между показателями разных способов измерения для одного и того же материала существуют специальные формулы и таблицы.
Факторы, определяющие вариант измерения
В лабораторных условиях, при наличии необходимого ассортимента оборудования, выбор способа исследования осуществляется в зависимости от определенных характеристик заготовки.
- Ориентировочное значение механического параметра. Для конструкционных сталей и материалов с небольшой твердостью до 450-650 НВ применяют метод Бринелля; для инструментальных, легированных сталей и других сплавов – Роквелла; для твердосплавов – Виккерса.
- Размеры испытуемого образца. Особо маленькие и тонкие детали обследуются с помощью твердомера Виккерса.
- Толщина металла в месте замера, в частности, цементированного или азотированного слоя.
Все требования и соответствия задокументированы ГОСТом.
Особенности методики Бринелля
Испытания на твердость металлов и сплавов с помощью твердомера Бринелля проводятся со следующими особенностями:
- Индентор – шарик из легированной стали или из карбидо-вольфрамового сплава диаметром 1, 2, 2,5, 5 или 10 мм (гост 3722-81).
- Продолжительность статического вдавливания: для чугуна и стали – 10-15 с., для цветных сплавов – 30, также возможна длительность в 60 с., а в некоторых случаях – 120 и 180 с.
- Граничное значение механического параметра: 450 НВ при измерении стальным шариком; 650 НВ при использовании твердосплава.
- Возможные нагрузки. С помощью входящих в комплект грузов корректируется фактическая сила деформации на испытуемый образец. Их минимальные допустимые значения: 153,2, 187,5, 250 Н; максимальные – 9807, 14710, 29420 Н (гост 23677-79).
С помощью формул, в зависимости от диаметра выбранного шарика и от испытуемого материала, можно вычислить соответствующее допустимое усилие вдавливания.
Тип сплава | Математическое вычисление нагрузки |
Сталь, сплавы никеля и титана | 30D2 |
Чугун | 10D2, 30D2 |
Медь и медные сплавы | 5D2, 10D2, 30D2 |
Легкие металлы и сплавы | 2,5D2, 5D2, 10D2, 15D2 |
Свинец, олово | 1D2 |
Пример обозначения:
400HB10/1500/20, где 400HB – твердость металла по Бринеллю; 10 – диаметр шарика, 10 мм; 1500 – статическая нагрузка, 1500 кгс; 20 – период осуществления вдавливания, 20 с.
Для установления точных цифр рационально исследовать один и тот же образец в нескольких местах, а общий результат определять путем нахождения среднего значения из полученных.
Определение твердости по методу Бринелля
Процесс исследования протекает в следующей последовательности:
- Проверка детали на соответствие требованиям (ГОСТ 9012-59, гост 2789).
- Проверка исправности аппарата.
- Выбор необходимого шарика, определение возможного усилия, установка грузов для его формирования, периода вдавливания.
- Запуск твердомера и деформация образца.
- Измерение диаметра углубления.
- Эмпирическое вычисление.
НВ=F/A,
где F – нагрузка, кгс или Н; A – площадь отпечатка, мм2.
НВ=(0,102*F)/(π*D*h),
где D – диаметр шарика, мм; h – глубина отпечатка, мм.
Твердость металлов, измеренная этим способом, имеет эмпирическую связь с вычислением параметров прочности. Метод точен, особенно для мягких сплавов. Является основополагающим в системах определения значений этого механического свойства.
Особенности методики Роквелла
Этот способ измерения был изобретен в 20-х годах XX века, более автоматизирован, чем предыдущий. Применяется для более твердых материалов. Основные его характеристики (ГОСТ 9013-59; гост 23677-79):
- Наличие первичной нагрузки в 10 кгс.
- Период выдержки: 10-60 с.
- Граничные значения возможных показателей: HRA: 20-88; HRB: 20-100; HRC: 20-70.
- Число визуализируется на циферблате твердомера, также может рассчитываться арифметически.
- Шкалы и инденторы. Известно 11 различных шкал в зависимости от типа индентора и предельно-допустимой статической нагрузки. Наиболее распространённые в использовании: А, В и С.
А: алмазный конусный наконечник, угол при вершине 120˚, общая допустимая сила статического влияния – 60 кгс, HRA; исследуются тонкие изделия, в основном прокат.
С: также алмазный конус, рассчитанный на максимальное усилие 150 кгс, HRC, применим для твердых и закаленных материалов.
В: шарик размером 1,588 мм, изготовленный из закаленной стали или из твердого карбидо-вольфрамового сплава, нагрузка – 100 кгс, HRB, используется для оценки твердости отожжённых изделий.
Шарикообразный наконечник (1,588 мм) применим для шкал Роквелла B, F, G. Также существуют шкалы E, H, K, для которых используется шарик диаметром 3,175 мм (ГОСТ 9013-59).
Количество проб, проделанных с помощью твердомера Роквелла на одной площади, ограничивается размером детали. Допускается повторная проба на расстоянии 3-4 диаметра от предыдущего места деформации. Толщина испытуемого изделия также регламентируется. Она должна быть не меньше увеличенной в 10 раз глубины внедрения наконечника.
Пример обозначения:
50HRC – твердость металла по Роквеллу, измерена с помощью алмазного наконечника, ее число равно 50.
План исследования по методу Роквелла
Измерение твердости металла более упрощено, нежели для способа Бринелля.
- Оценка размеров и характеристик поверхности детали.
- Проверка исправности аппарата.
- Определение типа наконечника и допустимой нагрузки.
- Установка образца.
- Осуществление первичного усилия на материал, величиной в 10 кгс.
- Осуществление полного соответствующего усилия.
- Чтение полученного числа на шкале циферблата.
Также возможен математический расчет с целью точного определения механического параметра.
При условии использования алмазного конуса с нагрузкой 60 или 150 кгс:
HR=100-((H-h)/0,002;
при совершении испытания с помощью шарика под усилием 100 кгс:
HR=130-((H-h)/0,002,
где h – глубина внедрения индентора при первичном усилии 10 кгс; H – глубина внедрения индентора при полной нагрузке; 0,002 – коэффициент, регламентирующий величину перемещения наконечника при изменении числа твердости на 1 единицу.
Метод Роквелла является простым, но недостаточно точным. В то же время он позволяет измерять показатели механического свойства для твердых металлов и сплавов.
Характеристики методики Виккерса
Определение твердости металлов по данному способу наиболее просто и точно. Работа твердомера основана на вдавливании в образец алмазного пирамидального наконечника.
Основные особенности:
- Индентор: алмазная пирамида с углом при вершине 136°.
- Предельно допустимая нагрузка: для легированного чугуна и стали — 5-100 кгс; для медных сплавов — 2,5-50 кгс; для алюминия и сплавов на его основе — 1-100 кгс.
- Период выдержки статической нагрузки: от 10 до 15 с.
- Испытуемые материалы: сталь и цветные металлы с твердостью более 450-500 НВ, в том числе изделия после химико-термической обработки.
Пример обозначения:
700HV20/15,
где 700HV – число твердости по Виккерсу; 20 – нагрузка, 20 кгс; 15 – период статического усилия, 15 с.
Последовательность исследования Виккерса
Порядок действий предельно упрощен.
- Проверка образца и аппаратуры. Особое внимание уделяется поверхности детали.
- Выбор допустимого усилия.
- Установка испытуемого материала.
- Запуск твердомера в работу.
- Чтение результата на циферблате.
Математический расчет по этому способу выглядит следующим образом:
HV=1,8544*(F/d2),
где F – нагрузка, кгс; d – среднее значение длин диагоналей отпечатка, мм.
Он позволяет измерять высокую твердость металлов, тонких и небольших деталей, при этом предоставляя высокую точность результата.
Способы перехода между шкалами
Определив диаметр отпечатка с помощью специального оборудования, можно с помощью таблиц определить твердость. Таблица твердости металлов – проверенный помощник в вычислении данного механического параметра. Так, если известно значение по Бринеллю, можно легко определить соответствующее число Виккерса или Роквелла.
Пример некоторых значений соответствия:
Диаметр отпечатка,мм | Метод исследования | ||||
Бринелля | Роквелла | Виккерса | |||
A | C | B | |||
3,90 | 241 | 62,8 | 24,0 | 99,8 | 242 |
4,09 | 218 | 60,8 | 20,3 | 96,7 | 218 |
4,20 | 206 | 59,6 | 17,9 | 94,6 | 206 |
4,99 | 143 | 49,8 | — | 77,6 | 143 |
Таблица твердости металлов составлена на основе экспериментальных данных и имеет высокую точность. Также существуют графические зависимости твердости по Бринеллю от содержания углерода в железоуглеродистом сплаве. Так, в соответствии с такими зависимостями, для стали с количеством карбона в составе равному 0,2% она составляет 130 НВ.
Требования к образцу
В соответствии с требованиями ГОСТов, испытуемые детали должны соответствовать следующим характеристикам:
- Заготовка должна быть ровная, твердо лежать на столе твердомера, ее края должны быть гладкими или тщательно обработаны.
- Поверхность должна иметь минимальную шероховатость. Должна быть отшлифована и очищена, в том числе с помощью химических составов. Одновременно, во время процессов механической обработки, важно предупредить образование наклепа и повышения температуры обрабатываемого слоя.
- Деталь должна соответствовать выбранному методу определения твердости по параметрическим свойствам.
Выполнение первичных требований – обязательное условие точности измерений.
Твердость металлов — важное основополагающее механическое свойство, определяющее их некоторые остальные механические и технологические особенности, результаты предыдущих процессов обработки, влияние временных факторов, возможные условия эксплуатации. Выбор методики исследования зависит от ориентировочных характеристик образца, его параметров и химического состава.
Твердость гальванических покрытий
В случае гальванических покрытий следует учитывать, что из-за их небольшой толщины многие методы (особенно методы вдавливания) могут не подойти. Наиболее распространены методы Мооса и Викерса.
Для измерения твердости требуется нанести покрытие с минимальной толщиной в 2мкм. Если требуется меньшая толщина – используйте ГОСТ 9013-59, ГОСТ 9012-59, ГОСТ 22761-77
Принцип измерения тот же. После нанесения покрытия и его сушки в отделе контроля качества производится замер и выносится решение – отгружать изделие или отправлять его на перепокрытие.
Важную роль здесь играет как электролит, в котором наносится покрытие, так и режим нанесения покрытия (температура, плотность тока). Так например в одном электролите хромирования можно получить хромовое покрытие с твердостью от 500 до 1100 кгс/мм2.
Если говорить об электролите – важнейшую роль играет количество и качество блескообразователей в нем. Матовое цинковое покрытие будет значительно мягче, чем блестящее. Поэтому если Вы хотите суперблестящее покрытие – имейте в виду, оно будет твердое, возникнет вероятность его растрескивания или отслоения при малейшей гибке изделия.
Твердость – главный показатель качества инструмента
Выбирая инструмент для работы, мы сталкиваемся с такой его характеристикой как твердость, которая характеризует его качество.
Чем выше этот показатель, тем выше его способность сопротивляться пластической деформации и износу при воздействии на обрабатываемый материал.
Именно этот показатель определяет, согнется ли зуб пилы при распиловке заготовок, или какую проволоку смогут перекусить кусачки.
Метод Роквелла
Среди всех существующих методов определения твердости сталей и цветных металлов самым распространенным и наиболее точным является метод Роквелла.
Проведение измерений и определение числа твердости по Роквеллу регламентируется соответствующими документами ГОСТа 9013-59
.
Этот метод реализуется путем вдавливания в тестируемый материал инденторов – алмазного конуса или твердосплавного шарика.
Алмазные инденторы используются для тестирования закаленных сталей и твердых сплавов, а твердосплавные шарики – для менее твердых и относительно мягких металлов. Измерения проводят на механических или электронных твердомерах.
Методом Роквелла предусматривается возможность применения целого ряда шкал твердости A, B, C, D, E, F, G, H (всего – 54), каждая из которых обеспечивает наибольшую точность только в своем, относительно узком диапазоне измерений.
Для измерения высоких значений твердости алмазным конусом чаще всего используются шкалы «А», «С». По ним тестируют образцы из закаленных инструментальных сталей и других твердых стальных сплавов. А сравнительно более мягкие материалы, такие как алюминий, медь, латунь, отожженные стали испытываются шариковыми инденторами по шкале «В».
Пример обозначения твердости по Роквеллу: 58 HRC или 42 HRB.
Впереди стоящие цифры обозначают число или условную единицу измерения. Две буквы после них – символ твердости по Роквеллу, третья буква – шкала, по которой проводились испытания.
(!)
Два одинаковых значения от разных шкал – это не одно и то же, например, 58 HRC ≠ 58 HRA. Сопоставлять числовые значения по Роквеллу можно только в том случае, если они относятся к одной шкале.
Диапазоны шкал Роквелла по ГОСТ 8.064-94:
A | 70-93 HR |
B | 25-100 HR |
C | 20-67 HR |
Слесарный инструмент
Инструменты для ручной обработки металлов (рубка, резка, опиливание, клеймение, пробивка, разметка) изготавливают из углеродистых и легированных инструментальных сталей. Их рабочие части подвергают закаливанию до определенной твердости, которая должна находиться в пределах:
Ножовочные полотна, напильники | 58 – 64 HRC |
Зубила, крейцмессели, бородки, кернеры, чертилки | 54 – 60 HRC |
Молотки (боек, носок) | 50 – 57 HRC |
Монтажный инструмент
Сюда относятся различные гаечные ключи, отвертки, шарнирно-губцевый инструмент. Норму твердости для их рабочих частей устанавливают действующие стандарты. Это очень важный показатель, от которого зависит, насколько инструмент износостоек и способен сопротивляться смятию. Достаточные значения для некоторых инструментов приведены ниже:
Гаечные ключи с размером зева до 36 мм | 45,5 – 51,5 HRC |
Гаечные ключи с размером зева от 36 мм | 40,5 – 46,5 HRC |
Отвертки крестовые, шлицевые | 47 – 52 HRC |
Плоскогубцы, пассатижи, утконосы | 44 – 50 HRC |
Кусачки, бокорезы, ножницы по металлу | 56 – 61 HRC |
Металлорежущий инструмент
В эту категорию входит расходная оснастка для обработки металла резанием, используемая на станках или с ручными инструментами. Для ее изготовления используются быстрорежущие стали или твердые сплавы, которые сохраняют твердость в холодном и перегретом состоянии.
Метчики, плашки | 61 – 64 HRC |
Зенкеры, зенковки, цековки | 61 – 65 HRC |
Сверла по металлу | 63 – 69 HRC |
Сверла с покрытием нитрид-титана | до 80 HRC |
Фрезы из HSS | 62 – 66 HRC |
Примечание:
Некоторые производители фрез указывают в маркировке твердость не самой фрезы, а материала, который она может обрабатывать.
Крепежные изделия
Существует взаимосвязь между классом прочности крепежа и его твердостью. Для высокопрочных болтов, винтов, гаек эта взаимосвязь отражена в таблице:
Болты и винты | Гайки | Шайбы | |||||||||
Классы прочности | 8.8 | 10.9 | 12.9 | 8 | 10 | 12 | Ст. | Зак.ст. | |||
d16 мм | d16 мм | ||||||||||
Твердость по Роквеллу, HRC | min | 23 | 23 | 32 | 39 | 11 | 19 | 26 | 29.2 | 20.3 | 28.5 |
max | 34 | 34 | 39 | 44 | 30 | 36 | 36 | 36 | 23.1 | 40.8 |
Если для болтов и гаек главной механической характеристикой является класс прочности, то для таких крепежных изделий как стопорные гайки, шайбы, установочные винты, твердость не менее важна.
Стандартами установлены следующие минимальные / максимальные значения по Роквеллу:
Стопорные кольца до Ø 38 мм | 47 – 52 HRC |
Стопорные кольца Ø 38 -200 мм | 44 – 49 HRC |
Стопорные кольца от Ø 200 мм | 41 – 46 HRC |
Стопорные зубчатые шайбы | 43.5 – 47.5 HRB |
Шайбы пружинные стальные (гровер) | 41.5 – 51 HRC |
Шайбы пружинные бронзовые (гровер) | 90 HRB |
Установочные винты класса прочности 14Н и 22Н | 75 – 105 HRB |
Установочные винты класса прочности 33Н и 45Н | 33 – 53 HRC |
Относительное измерение твердости при помощи напильников
Стоимость стационарных и портативных твердомеров довольно высока, поэтому их приобретение оправдано только необходимостью частой эксплуатации. Многие мастеровые по мере надобности практикуют измерять твердость металлов и сплавов относительно, при помощи подручных средств.
Опиливание образца напильником – один из самых доступных, однако далеко не самый объективный способ проверки твердости стальных деталей, инструмента, оснастки.
Напильник должен иметь не затупленную двойную насечку средней величины №3 или №4.
Сопротивление опиливанию и сопровождающий его скрежет позволяет даже при небольшом навыке отличить незакаленную сталь от умеренно (40 HRC) или твердо закаленной (55 HRC).
Для тестирования с большей точностью существуют наборы тарированных напильников, именуемые также царапающий твердомер. Они применяются для испытания зубьев пил, фрез, шестерен. Каждый такой напильник является носителем определенного значения по шкале Роквелла.
Твердость измеряется коротким царапанием металлической поверхности поочередно напильниками из набора. Затем выбираются два близко стоящие – более твердый, который оставил царапину и менее твердый, который не смог поцарапать поверхность.
Твердость тестируемого металла будет находиться между значениями твердости этих двух напильников.
Переводная таблица твердости
Для сопоставления чисел твердости Роквелла, Бринелля, Виккерса, а также для перевода показателей одного метода в другой существует справочная таблица:
Виккерс, HV | Бринелль, HB | Роквелл, HRB |
100 | 100 | 52.4 |
105 | 105 | 57.5 |
110 | 110 | 60.9 |
115 | 115 | 64.1 |
120 | 120 | 67.0 |
125 | 125 | 69.8 |
130 | 130 | 72.4 |
135 | 135 | 74.7 |
140 | 140 | 76.6 |
145 | 145 | 78.3 |
150 | 150 | 79.9 |
155 | 155 | 81.4 |
160 | 160 | 82.8 |
165 | 165 | 84.2 |
170 | 170 | 85.6 |
175 | 175 | 87.0 |
180 | 180 | 88.3 |
185 | 185 | 89.5 |
190 | 190 | 90.6 |
195 | 195 | 91.7 |
200 | 200 | 92.8 |
205 | 205 | 93.8 |
210 | 210 | 94.8 |
215 | 215 | 95.7 |
220 | 220 | 96.6 |
225 | 225 | 97.5 |
230 | 230 | 98.4 |
235 | 235 | 99.2 |
240 | 240 | 100 |
Виккерс, HV | Бринелль, HB | Роквелл, HRC |
245 | 245 | 21.2 |
250 | 250 | 22.1 |
255 | 255 | 23.0 |
260 | 260 | 23.9 |
265 | 265 | 24.8 |
270 | 270 | 25.6 |
275 | 275 | 26.4 |
280 | 280 | 27.2 |
285 | 285 | 28.0 |
290 | 290 | 28.8 |
295 | 295 | 29.5 |
300 | 300 | 30.2 |
310 | 310 | 31.6 |
320 | 319 | 33.0 |
330 | 328 | 34.2 |
340 | 336 | 35.3 |
350 | 344 | 36.3 |
360 | 352 | 37.2 |
370 | 360 | 38.1 |
380 | 368 | 38.9 |
390 | 376 | 39.7 |
400 | 384 | 40.5 |
410 | 392 | 41.3 |
420 | 400 | 42.1 |
430 | 408 | 42.9 |
440 | 416 | 43.7 |
450 | 425 | 44.5 |
460 | 434 | 45.3 |
470 | 443 | 46.1 |
490 | — | 47.5 |
500 | — | 48.2 |
520 | — | 49.6 |
540 | — | 50.8 |
560 | — | 52.0 |
580 | — | 53.1 |
600 | — | 54.2 |
620 | — | 55.4 |
640 | — | 56.5 |
660 | — | 57.5 |
680 | — | 58.4 |
700 | — | 59.3 |
720 | — | 60.2 |
740 | — | 61.1 |
760 | — | 62.0 |
780 | — | 62.8 |
800 | — | 63.6 |
820 | — | 64.3 |
840 | — | 65.1 |
860 | — | 65.8 |
880 | — | 66.4 |
900 | — | 67.0 |
1114 | — | 69.0 |
1120 | — | 72.0 |
Примечание:
В таблице приведены приближенные соотношения чисел, полученные разными методами. Погрешность перевода значений HV в HB составляет ±20 единиц, а перевода HV в HR (шкала C и B) до ±3 единиц.
При выборе инструмента желательно предпочесть модели известных производителей. Это дает уверенность в том, что приобретаемый продукт изготовлен с соблюдением технологий, а его твердость отвечает заявленным значениям.
Статьи о продукции 23.09.2019 16:32:41