Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:
- износостойкость металла;
- возможность обработки резанием, шлифованием;
- сопротивляемость местному давлению;
- способность резать другой материал и прочие.
На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.
Понятие твердости
Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).
Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.
После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.
В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.
Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.
Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.
Прилагаемая нагрузка может прилагаться:
- вдавливанием;
- царапанием;
- резанием;
- отскоком.
Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.
На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.
Самый Твердый. Шкала Мооса. Химия – Просто
Как определить твёрдость материала? Очень просто! Для этого необходимо воспользоваться шкалой твёрдости.
В видео описано, что такое шкала твёрдости Мооса и как ею пользоваться. Приятного просмотра!
Найдены возможные дубликаты
17 минут, это слишком много)))
Твердость материала по Моосу – это сопротивление, оказываемое его поверхностью при попытке поцарапать ее другим материалом. Твердость зависит от степени связности внутриатомной структуры материала.
Шкала Мооса – это условная шкала эталонных минералов для оценки твёрдости материалов посредством царапания. Сама шкала представлена ниже.
Шкала твёрдости Мооса
Единицы измерения твердости
Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.
Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.
Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:
- сплавы железа – 30 кгс/мм2;
- медь и никель – 10 кгс/мм2;
- алюминий и магний – 5 кгс/мм2.
Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.
Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.
В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.
Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.
Методика отображает тип индентора и прилагаемую к нему нагрузку.
Тип шкалы | Инструмент | Прилагаемая нагрузка, кгс |
А | Конус из алмаза, угол вершины которого 120° | 50-60 |
В | Шарик 1/16 дюйма | 90-100 |
С | Конус из алмаза, угол вершины которого 120° | 140-150 |
В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.
Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.
Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.
К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:
Читать также: Искровой генератор своими руками
0,196 — нагрузка на наконечник, Н;
2800 – численное значение твердости, Н/мм 2 .
ПРОИСХОЖДЕНИЕ
Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами. Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.
Твердость основных металлов и сплавов
Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.
Цветные металлы
Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.
Черные металлы
Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.
Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.
HB | HV | HRC | HRA | HSD |
228 | 240 | 20 | 60.7 | 36 |
260 | 275 | 24 | 62.5 | 40 |
280 | 295 | 29 | 65 | 44 |
320 | 340 | 34.5 | 67.5 | 49 |
360 | 380 | 39 | 70 | 54 |
415 | 440 | 44.5 | 73 | 61 |
450 | 480 | 47 | 74.5 | 64 |
480 | 520 | 50 | 76 | 68 |
500 | 540 | 52 | 77 | 73 |
535 | 580 | 54 | 78 | 78 |
Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.
ФИЗИЧЕСКИЕ СВОЙСТВА
Цвет минерала | железно-черный |
Цвет черты | серый |
Прозрачность | непрозрачный |
Блеск | металлический |
Спайность | несовершенная по |
Твердость (шкала Мооса) | 4,5 |
Излом | в зазубринах |
Прочность | ковкий |
Плотность (измеренная) | 7.3 — 7.87 г/см3 |
Радиоактивность (GRapi) | |
Магнетизм | ферромагнетик |
Методы измерения твердости
Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.
Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:
HB=2P/(πD*√(D 2 -d 2 ),
- где Р – прикладываемая нагрузка, кгс;
- D – окружность шарика, мм;
- d – окружность отпечатка, мм. Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов: сплавы из железа — 30D 2 ; медь и ее сплавы — 10D 2 ; баббиты, свинцовые бронзы — 2,5D 2 .
Условное изображение принципа испытания
Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.
Метод измерения твердости по Роквеллу
Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.
Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.
Математическая формула для расчета: HV=0.189*P/d 2 МПа HV=1,854*P/d 2 кгс/мм 2 Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.
Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.
Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.
После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.
d, мм | HB | HRA | HRC | HRB |
2,3 | 712 | 85,1 | 66,4 | — |
2,5 | 601 | 81,1 | 59,3 | — |
3,0 | 415 | 72,6 | 43,8 | — |
3,5 | 302 | 66,7 | 32,5 | — |
4,0 | 229 | 61,8 | 22 | 98,2 |
5,0 | 143 | — | — | 77,4 |
5,2 | 131 | — | — | 72,4 |
Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.
Читать также: Ремонт китайского паяльника с регулятором температуры
Испытание на твердость – основной метод оценки качества термообработки изделия.
Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ
определяется отношением нагрузки к сферической поверхности отпечатка.
Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB
. При использовании алмазного конуса твердость обозначают как
HRA
или
HRC
(в зависимости от нагрузки).
Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.
Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.
СВОЙСТВА
В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод. Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.
Числа твердости HRC для некоторых деталей и инструментов
Детали и инструменты | Число твердости HRC |
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33. 38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35. 40 |
Шлицы круглых гаек | 36. 42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40. 45 |
Пружинные и стопорные кольца, клинья натяжные | 45. 50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50. 60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56. 60 |
Рабочие поверхности калибров – пробок и скоб | 56. 64 |
Копиры, ролики копирные | 58. 63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60. 64 |
НЕ ОДНОЙ КРОВИ
Как ни странно, но наиболее доступный материал для защиты циферблатов не имеет к стеклу никакого отношения — по крайней мере, на молекулярном уровне. Пластик, который именуют органическим стеклом, иногда — плексигласом, активно используется в различных недорогих механических и электронных часах. Материал под маркой Plexiglas был создан в 1928 году, а с 1933-го началось его промышленное производство. Появление органического стекла в период между двумя мировыми войнами было неслучайным, а двигателем его распространения стало развитие авиации, где требовалось сочетание прочности, оптической прозрачности, безосколочности, то есть безопасность для летчика, устойчивости к воздействию влаги и технических жидкостей.
Органическое стекло полностью состоит из термопластичной смолы, а производственный процесс представлен двумя основными методами: экструзии (выдавливание раскаленной полимерной массы через щель определенной ширины и толщины) и литья (когда раскаленная полимерная масса заливается между двумя слоями стекла или металла, а размер зазора между листами определяет толщину будущего листа).
Пластиковое стекло легко поцарапать, но не так уж просто разбить
Основным преимуществом пластика для часовой индустрии является его свойство легко принимать любую форму, покорно следуя воле дизайнеров. Относительная мягкость находит свое отражение и при эксплуатации: оргстекло легко поцарапать, но не так уж просто разбить. Плексиглас удобен в производстве и в обслуживании: отполировать или заменить такое стекло легко и недорого. Жаль, что менять или полировать его придется часто, особенно если владелец часов ведет активный образ жизни.
Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору
Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.
По Роквеллу | По Бринеллю | По Виккерсу (HV) | По Шору | |||
HRC | HRA | HRB | Диаметр отпечатка | HB | ||
65 | 84,5 | – | 2,34 | 688 | 940 | 96 |
64 | 83,5 | – | 2,37 | 670 | 912 | 94 |
63 | 83 | – | 2,39 | 659 | 867 | 93 |
62 | 82,5 | – | 2,42 | 643 | 846 | 92 |
61 | 82 | – | 2,45 | 627 | 818 | 91 |
60 | 81,5 | – | 2,47 | 616 | – | – |
59 | 81 | – | 2,5 | 601 | 756 | 86 |
58 | 80,5 | – | 2,54 | 582 | 704 | 83 |
57 | 80 | – | 2,56 | 573 | 693 | – |
56 | 79 | – | 2,6 | 555 | 653 | 79,5 |
55 | 79 | – | 2,61 | 551 | 644 | – |
54 | 78,5 | – | 2,65 | 534 | 618 | 76,5 |
53 | 78 | – | 2,68 | 522 | 594 | – |
52 | 77,5 | – | 2,71 | 510 | 578 | – |
51 | 76 | – | 2,75 | 495 | 56 | 71 |
50 | 76 | – | 2,76 | 492 | 549 | – |
49 | 76 | – | 2,81 | 474 | 528 | – |
48 | 75 | – | 2,85 | 461 | 509 | 65,5 |
47 | 74 | – | 2,9 | 444 | 484 | 63,5 |
46 | 73,5 | – | 2,93 | 435 | 469 | – |
45 | 73 | – | 2,95 | 429 | 461 | 61,5 |
44 | 73 | – | 3 | 415 | 442 | 59,5 |
42 | 72 | – | 3,06 | 398 | 419 | – |
40 | 71 | – | 3,14 | 378 | 395 | 54 |
38 | 69 | – | 3,24 | 354 | 366 | 50 |
36 | 68 | – | 3,34 | 333 | 342 | – |
34 | 67 | – | 3,44 | 313 | 319 | 44 |
32 | 67 | – | 3,52 | 298 | 302 | – |
30 | 66 | – | 3,6 | 285 | 288 | 40,5 |
28 | 65 | – | 3,7 | 269 | 271 | 38,5 |
26 | 64 | – | 3,8 | 255 | 256 | 36,5 |
24 | 63 | 100 | 3,9 | 241 | 242 | 34,5 |
22 | 62 | 98 | 4 | 229 | 229 | 32,5 |
20 | 61 | 97 | 4,1 | 217 | 217 | 31 |
18 | 60 | 95 | 4,2 | 207 | 206 | 29,5 |
– | 59 | 93 | 4,26 | 200 | 199 | – |
– | 58 | – | 4,34 | 193 | 192 | 27,5 |
– | 57 | 91 | 4,4 | 187 | 186 | 27 |
– | 56 | 89 | 4,48 | 180 | 179 | 25 |
Отверстия под резьбу
Таблица сверл для отверстий под нарезание трубной цилиндрической резьбы.
Размеры гаек под ключ
Основные размеры под ключ для шестигранных головок болтов и шестигранных гаек.
Читать также: Обозначение прожектора на схеме
G и M коды
Примеры, описание и расшифровка Ж и М кодов для создания управляющих программ на фрезерных и токарных станках с ЧПУ.
Типы резьб
Типы и характеристики метрической, трубной, упорной, трапецеидальной и круглой резьбы.
Масштабы чертежей
Стандартные масштабы изображений деталей на машиностроительных и строительных чертежах.
Режимы резания
Онлайн калькулятор для расчета режимов резания при точении.
Отверстия под резьбу
Таблица сверл и отверстий для нарезания метрической резьбы c крупным (основным) шагом.
Станки с ЧПУ
Классификация станков с ЧПУ, станки с ЧПУ по металлу для точения, фрезерования, сверления, расточки, нарезания резьбы, развёртывания, зенкерования.
Режимы резания
Онлайн калькулятор для расчета режимов резания при фрезеровании.
Форматы чертежей
Таблица размеров сторон основных и дополнительных форматов листов чертежей.
CAD/CAM/CAE системы
Системы автоматизированного проектирования САПР, 3D программы для проектирования, моделирования и создания 3d моделей.
История создания
Для создания шкалы Моос использовал 10 эталонных минералов — тальк, гипс, кальцит, флюорит, апатит, ортоклаз, кварц, топаз, красный корунд и алмаз. Минералы он разместил в порядке возрастания их твердости, приняв в качестве отправной точки то, что более твердый минерал царапает более мягкий. Кальцит, например, царапает гипс, а на кальците царапины оставляет флюорит, и все эти минералы заставляют крошиться тальк. Так минералы получили соответствующие значения твердости в шкале Мооса: мел -1, гипс — 2, кальцит — 3, флюорит — 4. Дальнейшие исследования показали, что минералы, твердость которых ниже 6, царапаются стеклом, те, твердость которых выше 6 — царапают стекло. Твердость стекла по данной шкале составляет приблизительно 6,5.
Камни, твердость которых больше 6, обрабатываются алмазом.
Шкала Мооса предназначена лишь для грубой оценки твердости минералов. Более точный показатель — абсолютная твердость.