Характеристика технологических свойств металлов и сплавов

4.2

Средняя оценка: 4.2

Всего получено оценок: 260.

4.2

Средняя оценка: 4.2

Всего получено оценок: 260.

Физические свойства металлов отличают их от неметаллов. Все металлы, кроме ртути, – твёрдые кристаллические вещества, являющиеся восстановителями в окислительно-восстановительных реакциях.

Положение в таблице Менделеева

Металлы занимают I-II группы и побочные подгруппы III-VIII групп. Металлические свойства, т.е. способность отдавать валентные электроны или окисляться, увеличиваются сверху вниз по мере увеличения количества энергетических уровней. Слева направо металлические свойства ослабевают, поэтому наиболее активные металлы находятся в I-II группах, главных подгруппах. Это щелочные и щелочноземельные металлы.

Определить степень активности металлов можно по электрохимическому ряду напряжений. Металлы, стоящие до водорода, наиболее активны. После водорода стоят слабоактивные металлы, не вступающие в реакцию с большинством веществ.

Рис. 1. Электрохимический ряд напряжений металлов.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.


Рис. 2. Виды кристаллических решёток.

Глоссарий по физике

  1. Физическая природа прочности
  2. Механизм разрушения
  3. Значения предела прочности на растяжение
  4. Механические свойства металлов
  5. Прочность металлов
  6. Пластичность металлов
  7. Твердость
  8. Модуль продольной упругости
  9. Литература по прочности

Прочность твёрдых тел в широком смысле

— способность твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластической деформации) под действием внешних нагрузок.

Прочность твёрдых тел в узком смысле

— сопротивление разрушению. В зависимости от материала, вида напряжённого состояния (растяжение, сжатие, изгиб и др.) и условий эксплуатации (темп-pa, время действия нагрузки и др.) в технике приняты различные меры прочности твердых тел (предел текучести, временное сопротивление, предел усталости и т.д.).

Разрушение твёрдого тела — сложный процесс, зависящий от множества факторов, поэтому величины, определяющие прочность твёрдых тел, являются условными.

Рис. 1. Зависимость силы взаимодействия двух атомов от расстояния между ними.

Физическая природа прочности

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами или ионами, составляющими тело. Напр., сила взаимодействия двух соседних атомов (если пренебречь влиянием окружающих атомов) зависит лишь от расстояния между ними (рис. 1). При равновесном расстоянии r0 ~ 0,1 нм (1 ) эта сила равна нулю. При меньших расстояниях сила положительна и атомы отталкиваются, при больших — притягиваются. На критич. расстояниисила притяжения по абс. величине максимальна и равна FT. Напр., если при растяжении цилинд-рич. стержня с поперечным сечением S0 действующая сила Р, направленная вдоль его оси, такова, что приходящаяся на данную пару атомов внеш. сила превосходит макс. силу притяжения FT, то атомы беспрепятственно удаляются друг от друга. Однако, чтобы тело разрушилось вдоль нек-рой поверхности, необходимо, чтобы все пары атомов, расположенные по обе стороны от рассматриваемой поверхности, испытывали действие силы, превосходящей FT. Напряжение, отвечающее силе F т, наз. теоретич. прочностью на разрыв s т (sT0,1 E, где E — модуль Юнга). Однако на практике наблюдается разрушение при нагрузке Р*, к-рой соответствует напряжение s = P*/S в 100-1000 раз меньше s т· Расхождение теоретич. П. т. т. с действительной объясняется неоднородностями структуры тела (границы зёрен в поликристаллич. материале, посторонние включения и др.), из-за к-рых нагрузка Р распределяется неравномерно по сечению тела.

Механизм разрушения

Если на участке поверхности малых размеров (но значительно превышающих сечение одного атома) локальное напряжение окажется больше s т, вдоль этой площадки произойдёт разрыв. Края разрыва разойдутся на расстояние, большее rк, на к-ром межатомные силы уже малы, и образуется микротрещина (рис. 2). Зарождению микротрещин при напряжении ниже sт способствуют термич. флуктуации.

Рис. 2. Трещина Гриффита; заштрихована область, в которой сняты напряжения. Стрелки указывают направление напряжения.

Локальные напряжения особенно велики у края образовавшейся трещины, где происходит концентрация напряжений, причём они тем больше, чем больше её размер. Если этот размер больше нек-рого критич. rс, на атомы у края трещины действует напряжение, превосходящее sт, и трещина растёт дальше по всему сечению тела с большой скоростью — наступает разрушение. Величина rс определяется из условия, что освободившаяся при росте трещины упругая энергия материала покрывает затраты энергии на образование новой поверхности трещины: (где g — энергия единицы поверхности материала). Прежде чем возрастающее внеш. усилие достигнет необходимой для разрушения величины, отд. группы атомов, особенно входящие в состав дефектов в кристаллах, обычно испытывают перестройки, при к-рых локальные напряжения уменьшаются («релаксируют»). В результате происходит необратимое изменение формы тела — пластич. деформация; ей также способствуют термич. флуктуации. Разрушению всегда предшествует большая пли меньшая пластич. деформация. Поэтому при оценке rс в энергию g должна быть включена работа пластич. деформации уР. Если пластич. деформация велика не только вблизи поверхности разрушения, но и в объёме тела, то разрушение вязкое. Разрушение без за-метных следов пластич. деформации наз. хрупким. Характер разрушения проявляется в структуре поверхности излома. В кристаллич. телах хрупкому разрушению отвечает скол по кристаллографич. плоскостям спайности, вязкому — слияние микропустот и скольжение. При низкой температуре разрушение преим. хрупкое, при высокой — вязкое. Темп-pa перехода от вязкого к хрупкому разрушению наз. критич. температурой хладноломкости.

Поскольку разрушение есть процесс зарождения и роста трещин и пор, оно характеризуется скоростью или временемот момента приложения нагрузки до момента разрыва, т. е. долговечностью материала. Исследования мн. кристаллич. и аморфных тел показали, что в широком интервале температур Т и напряжений s, приложенных к образцу, долговечность при растяжении определяется соотношением

гдеприбл. равно периоду тепловых колебаний атомов в твёрдом теле (10-12 с), энергия U0 близка к энергии сублимации материала, активац. объём V составляет обычно неск. тысяч атомных объёмов и зависит от структуры материала, сформировавшейся в процессе предварительной термич. и механич. обработки и во время нагружения. При низких темп-pax долговечность очень резко падает с ростом напряжения, так что прп любых важных для практики значенияхсуществует почти постоянное предельное значение напряжения выше к-рого образец разрушается практически мгновенно, а ниже — живёт неограниченно долго. Это значение s0 можно считать прочности пределом (табл.).

Значения предела прочности на растяжение

кгс/мм2 (1 кгс/мм2=10 МН/м2)

s0 s0/E
Графит (нитевидный кристалл) 2400 0,024
Сапфир (нитевидный кристалл) 1500 0,028
Железо (нитевидный кристалл) 1300 0,044
Тянутая проволока из высокоуглеродистой стали 420 0,02
Тянутая проволока из вольфрама 380 0,009
Стекловолокно 360 0,035
Мягкая сталь 60 0,003
Нейлон 50

Времязатрачивается на ожидание термофлуктуац. зарождения микротрещин и на их рост до критич. размера . Когда к образцу прикладывают напряжение s, он деформируется сначала упруго, затем пластически, причём около структурных неоднородностей, имевшихся в исходном состоянии или возникших при пластич. деформации, образуются большие локальные напряжения (напр., в кристаллах — в результате скопления дислокаций). В этих местах зарождаются микротрещины. Их концентрация может быть очень большой (напр., в нек-рых ориентиров. полимерах до 1015 трещин в 1 см3). Однако их размеры, определяемые масштабом структурных неоднородностей, значительно меньше . Под пост. напряжением размеры и концентрация трещин растут медленно и тело не разрушается, пока случайно (напр., в результате последоват. слияния близко расположенных соседних трещин) одна из них не дорастёт до критич. размера. Поэтому при создании прочных материалов следует заботиться не столько о том, чтобы трещины не зарождались, сколько о том, чтобы они не росли.

Случайное распределение структурных неоднородностей по объёму образца, по размерам и по степени прочности и случайный характер термин. флуктуации приводят к разбросу значений долговечности (а также предела П. т. т.) при испытаниях одинаковых образцов при заданных значенияхи Т. Вероятность встретить в образце «слабое» место тем больше, чем больше его объём. Поэтому П. т. т. (разрушающее напряжение) малых образцов (напр., тонких нитей) выше, чем больших из того же материала (т. н. масштабный эффект). Участки с повышенным напряжением, где легче зарождаются микротрещины, встречаются чаще у поверхности (выступы, царапины). Поэтому полировка поверхности и защитные покрытия повышают П. т. т. Напротив, в агрессивных средах П. т. т. понижена.

Свойства

Строение кристаллической решётки определяет основные физические и химические свойства металлов. Металлы блестят, плавятся, проводят тепло и электричество. Промышленность и металлургия нашли применение физическим свойствам металлов в изготовлении деталей, фольги, корпусов машин, зеркал, бытовой и промышленной химии. Особенности металлов и их использование представлены в таблице физических свойств металлов.

Свойства Особенности Примеры Применение
Металлический блеск Способность отражать солнечный свет Наиболее блестящими металлами являются Hg, Ag, Pd Изготовление зеркал
Плотность Лёгкие – имеют плотность меньше 5 г/см3 Na, K, Ba, Mg, Al. Самый лёгкий металл – литий с плотностью 0,533 г/см3 Изготовление облицовки, деталей самолётов
Тяжёлые – имеют плотность больше 5 г/см3 Sn, Fe, Zn, Au, Pb, Hg. Самый тяжёлый – осмий с плотностью 22,5 г/см3 Использование в сплавах
Пластичность Способность изменять форму без разрушений (можно раскатать в тонкую фольгу) Наиболее пластичные – Au, Cu, Ag. Хрупкие – Zn, Sn, Bi, Mn Формовка, сгибание труб, изготовление проволоки
Твёрдость Мягкие – режутся ножом Na, K, In Изготовление мыла, стекла, удобрений
Твёрдые – сравнимы по твёрдости с алмазом Самый твёрдый – хром, режет стекло Изготовление несущих конструкций
Температура плавления Легкоплавкие – температура плавления ниже 1000°С Hg (38,9°С), Ga (29,78°С), Cs (28,5°С), Zn (419,5°C) Производство радиотехники, жести
Тугоплавкие – температура плавления выше 1000°С Cr (1890°С), Mo (2620°С), V (1900°С). Наиболее тугоплавкий – вольфрам (3420°С) Изготовление ламп накаливания
Теплопроводность Способность передавать тепло другим телам Лучше всего проводят ток и тепло Ag, Cu, Au, Al Приготовление пищи в металлической посуде
Электропроводность Способность проводить электрический ток за счёт свободных электронов Передача электричества по проводам


Рис. 3. Примеры применения металлов.

Самый твердый металл в мире

Наш мир полон удивительных фактов, которые интересны множеству людей. Не являются исключением и свойства различных металлов. Среди этих элементов, которых в мире насчитывается 94, есть самые пластичные и ковкие, есть также с высокой электропроводностью или с большим коэффициентом сопротивления. В этой статье речь пойдет о самых твердых металлах, а также об их уникальных свойствах.

Первенство в перечне металлов, отличающихся наибольшей твердостью, занимает иридий. Его открыл в начале XIX века химик из Англии Смитсон Теннант. Иридий обладает следующими физическими свойствами:

  • имеет серебристо-белый цвет;
  • температура его плавления – 2466 оС;
  • температура кипения – 4428 оС;
  • сопротивление – 5,3·10−8Ом·м.

Поскольку иридий является твердейшим металлом на планете, он с трудом поддается обработке. Но его все же применяют в различных промышленных сферах. К примеру, из него изготавливаются небольшие шарики, которые используются в перьях для ручек. Из иридия изготавливают комплектующие к космическим ракетам, некоторые детали для автомобилей и другое.

Иридий

В природе встречается очень мало иридия. Находки этого металла являются своего рода свидетельством того, что в месте, где он был обнаружен, падали метеориты. Эти космические тела содержат значительное количество металла. Ученые полагают, что наша планета также богата иридием, но его залежи находятся ближе к ядру Земли.

Рутений

Вторая позиция в нашем списке достается рутению. Открытие этого инертного металла серебристого цвета принадлежит русскому химику Карлу Клаусу, которое было сделано в 1844 году. Этот элемент относится к платиновой группе. Он является редким металлом. Ученым удалось установить, что всего на планете имеется примерно 5 тыс. тонн рутения. В год удается добыть примерно 18 тонн металла.

Рутений

Из-за ограниченного количества и высокой стоимости рутений редко применяется в промышленности. Его используют в следующих случаях:

  • его небольшое количество добавляют в титан, чтобы улучшить коррозийные свойства;
  • из его сплава с платиной делают электрические контакты, отличающиеся высокой стойкостью;
  • рутений часто используют в качестве катализатора для химических реакций.

Хром

Одним из самых твердых металлов является и хром. Его открыли в России в 1763 году в месторождении Северного Урала. Он имеет голубовато-белый цвет, хотя бывают случаи, что его считают черным металлом. Хром нельзя назвать редким металлом. Его залежами богаты следующие страны:

  • Казахстан;
  • Россия;
  • Мадагаскар;
  • Зимбабве.

Хром

Месторождения хрома есть и в других государствах. Этот металл широко применяется в различных отраслях металлургии, науки, машиностроения и других.

Бериллий

Пятая позиция в списке наиболее твердых металлов досталась бериллию. Его открытие принадлежит химику Луи Никола Воклену из Франции, которое было сделано в 1798 году. Этот металл имеет серебристо-белый цвет.

Несмотря на свою твердость, бериллий является хрупким материалом, что сильно усложняет его обработку. Его применяют для создания высококачественных громкоговорителей. Он применяется для создания реактивного топлива, огнеупорных материалов.

Металл широко используется при создании аэрокосмической техники и лазерных установок. Он также применяется в атомной энергетике и при изготовлении рентгенотехники.

Бериллий

Что мы узнали?

Из урока 9 класса узнали о физических свойствах металлов. Кратко рассмотрели положение металлов в периодической таблице и особенности строения кристаллической решётки. Благодаря строению металлы обладают пластичностью, твёрдостью, способностью плавиться, проводить электрический ток и тепло. Свойства металлов неоднородны. Различают лёгкие и тяжёлые металлы, лёгкоплавкие и тугоплавкие, мягкие и твёрдые. Физические свойства используются для изготовления сплавов, электрических проводов, посуды, мыла, стекла, конструкций различной формы.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]