Теплопроводность цветных металлов и технических сплавов
В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.
Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.
По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.
Теплопроводность меди – как влияет на свойства меди?
Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом.
Величина способности проводить тепло характеризуется коэффициентом теплопроводности.
Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.
Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу).
Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов).
Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:
Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.
Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.
Медный радиатор отопления
Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Металл | Коэффициент теплопроводности металлов при температура, °С | ||||
— 100 | 100 | 300 | 700 | ||
Алюминий | 2,45 | 2,38 | 2,30 | 2,26 | 0,9 |
Бериллий | 4,1 | 2,3 | 1,7 | 1,25 | 0,9 |
Ванадий | — | — | 0,31 | 0,34 | — |
Висмут | 0,11 | 0,08 | 0,07 | 0,11 | 0,15 |
Вольфрам | 2,05 | 1,90 | 1,65 | 1,45 | 1,2 |
Гафний | — | — | 0,22 | 0,21 | — |
Железо | 0,94 | 0,76 | 0,69 | 0,55 | 0,34 |
Золото | 3,3 | 3,1 | 3,1 | — | — |
Индий | — | 0,25 | — | — | — |
Иридий | 1,51 | 1,48 | 1,43 | — | — |
Кадмий | 0,96 | 0,92 | 0,90 | 0,95 | 0,44 (400°) |
Калий | — | 0,99 | — | 0,42 | 0,34 |
Кальций | — | 0,98 | — | — | — |
Кобальт | — | 0,69 | — | — | — |
Литий | — | 0,71 | 0,73 | — | — |
Магний | 1,6 | 1,5 | 1,5 | 1,45 | — |
Медь | 4,05 | 3,85 | 3,82 | 3,76 | 3,50 |
Молибден | 1,4 | 1,43 | — | — | 1,04 (1000°) |
Натрий | 1,35 | 1,35 | 0,85 | 0,76 | 0,60 |
Никель | 0,97 | 0,91 | 0,83 | 0,64 | 0,66 |
Ниобий | 0,49 | 0,49 | 0,51 | 0,56 | — |
Олово | 0,74 | 0,64 | 0,60 | 0,33 | — |
Палладий | 0,69 | 0,67 | 0,74 | — | — |
Платина | 0,68 | 0,69 | 0,72 | 0,76 | 0,84 |
Рений | — | 0,71 | — | — | — |
Родий | 1,54 | 1,52 | 1,47 | — | — |
Ртуть | 0,33 | 0,09 | 0.1 | 0,115 | — |
Свинец | 0,37 | 0,35 | 0,335 | 0,315 | 0,19 |
Серебро | 4,22 | 4,18 | 4,17 | 3,62 | — |
Сурьма | 0,23 | 0,18 | 0,17 | 0,17 | 0,21 |
Таллий | 0,41 | 0,43 | 0,49 | 0,25 (400 0) | |
Тантал | 0,54 | 0,54 | — | — | — |
Титан | — | — | 0,16 | 0,15 | — |
Торий | — | 0,41 | 0,39 | 0,40 | 0,45 |
Уран | — | 0,24 | 0,26 | 0,31 | 0,40 |
Хром | — | 0,86 | 0,85 | 0,80 | 0,63 |
Цинк | 1,14 | 1,13 | 1,09 | 1,00 | 0,56 |
Цирконий | — | 0,21 | 0,20 | 0,19 | — |
: Азотирование стали: технология процесса, оборудование
Алюминий и медь – что лучше?
У алюминия есть один минус по сравнению с медью: его теплопроводность в 1,5 раза меньше, а именно 201–235 Вт/(м*К). Однако по сравнению с другими металлами это достаточно высокие значения. Алюминий так же, как и медь, обладает высокими антикоррозийными свойствами. Кроме того, он имеет такие преимущества, как:
- малая плотность (удельный вес в 3 раза меньше, чем у меди);
- низкая стоимость (в 3,5 раза меньше, чем у меди).
Алюминиевый радиатор отопления
Благодаря простым расчетам получается, что алюминиевая деталь может оказаться дешевле медной практически в 10 раз, ведь она весит намного меньше и изготовлена из более дешевого материала.
Этот факт наряду с высокой теплопроводностью позволяет использовать алюминий в качестве материала для посуды и пищевой фольги для духовых шкафов.
Главный недостаток алюминия состоит в том, что он является более мягким, поэтому его можно использовать только в составе сплавов (например, дюралюминия).
Для эффективного теплообмена важную роль играет скорость отдачи тепла в окружающую среду, и этому активно способствует обдув радиаторов. В результате меньшая теплопроводность алюминия (относительно меди) нивелируется, а вес и стоимость оборудования снижаются. Эти важные плюсы позволяют алюминию постепенно вытеснять медь из использования в системах кондиционирования.
Использование меди в электронике
В некоторых отраслях, к примеру, в радиопромышленности и электронике, медь является незаменимой.
Дело в том, что этот металл по природе своей очень пластичен: его можно вытянуть крайне тонкую проволоку (0,005 мм), а также создать другие специфические токопроводящие элементы для электронных приборов.
А высокая теплопроводность позволяет меди крайне эффективно отводить неизбежно возникающее при работе электроприборов тепло, что очень важно для современной высокоточной, но в то же время компактной техники.
Актуально использование меди в тех случаях, когда требуется сделать наплавку определенной формы на стальную деталь. При этом применяется шаблон из меди, который не соединяется с привариваемым элементом. Использование алюминия для этих целей невозможно, так как он будет расплавлен или прожжен. Стоит также упомянуть, что медь способна выполнить роль катода при сварке угольной дугой.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача.
В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики.
Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве.
Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов.
Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
- вида металла;
- химического состава;
- пористости;
- размеров.
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями.
Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину.
Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град.
Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры.
Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град.
Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град.
А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град). Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.
Коэффициенты теплопроводности сплавов
В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС. Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.
Влияние нейтронного облучения на теплопроводность спеченных оксидов металлов
В таблице представлены значения теплопроводности плотных спеченных оксидов металлов до и после облучения потоком быстрых нейтронов. Теплопроводность оксидов дана при комнатной температуре и при сверхнизких температурах (5…100 К).
Значения указаны для следующих оксидов металлов: BeO, Al2O3, SiO2 (α-кварц), плавленый кварц, ZrSiO4, шпинель, форстерит, фарфор, слюда. Как видно из таблицы, значение коэффициента теплопроводности оксидов металлов при их облучении потоком быстрых нейтронов, в основном снижается.
Удельная теплоемкость цветных сплавов
В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град). Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.
Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.
Основные свойства оксидов металлов
В таблице приведены основные свойства оксидов металлов при комнатной температуре. Свойства указаны для следующих оксидов металлов: Al2O3, MgO, TiO, Ti2O3, TiO2, ZrO2, оксид цинка ZnO, оксиды железа FeO, Fe3O4, Fe2O3, NiO, оксид меди CuO, оксид ванадия V2O5, оксид вольфрама WO3, оксид марганца MnO2, оксид бария BaO2.
Даны следующие свойства оксидов металлов:
- молекулярная масса оксида;
- плотность, кг/м3;
- температура плавления, К;
- теплота плавления, кДж/кг;
- температура кипения, К;
- теплота испарения при кипении, кДж/кг;
- температура полиморфного превращения, К;
- теплота полиморфного превращения, кДж/кг.
Удельная теплоемкость многокомпонентных специальных сплавов
Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град). Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.
Плотность сплавов
Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.
ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.
Источники:
- Михеев М. А., Михеева И. М. Основы теплопередачи.
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
- Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М.: 1992. — 184 с.
- Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где q→ >> — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ — коэффициент теплопроводности
(удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T) (T)> (то есть в сторону скорейшего убывания температуры). Это выражение известно как
закон теплопроводности Фурье
.
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.
Связь с электропроводностью
Связь коэффициента теплопроводности ϰ с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:
Коэффициент теплопроводности газов
В газах коэффициент теплопроводности может быть найден по приближённой формуле
где ρ — плотность газа, cv > — удельная теплоёмкость при постоянном объёме, λ — средняя длина свободного пробега молекул газа, v¯ >> — средняя тепловая скорость. Эта же формула может быть записана как
где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5 , для одноатомного i=3 ), k — постоянная Больцмана, μ — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).
Теплопроводность в сильно разреженных газах
Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом
. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P >rho c_ l >propto P>, где l — размер сосуда, P — давление.
Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.