Как повысить твердость сплавов цветных металлов


Закалка алюминиевых профилей на прессе

Скорость охлаждения алюминиевых профилей — закалка — сразу после выхода из пресса должна быть достаточно быстрой, чтобы задержать магний и кремний в твердом растворе. Это обеспечивает достижение максимальных механических свойств материала профиля за счет их выделения при последующем упрочнении старением.
Необходимая скорость охлаждения твердого раствора легирующих элементов — магния и кремния в алюминии — для обеспечения эффекта закалки зависят от размеров поперечного сечения алюминиевого профиля и способов его охлаждения:

  • спокойным воздухом,
  • вентиляторами,
  • водяным туманом,
  • водяным спрейерным охлаждением или
  • в потоке воды.

На рисунке и в таблице показаны минимально допустимые скорости охлаждения алюминиевых профилей для различных сплавов серии 6ххх. Для алюминиевых профилей из сплава 6060 (алюминиевого сплава АД31) обычно бывает достаточно охлаждения на спокойном воздухе или вентиляторами, тогда как для профилей из сплава 6061 необходимо спрейерное охлаждение водой или охлаждение в потоке воды.

Термическая обработка алюминиевых профилей

Термическая обработка алюминиевых сплавов

Термическую обработку алюминиевых профилей применяют для модификации свойств алюминиевых сплавов, из которых они сделаны, путем изменения их микроструктуры. Основными упрочняющими механизмами в алюминиевых сплавах являются упрочнение за счет легирования твердого раствора и упрочнение за счет выделений вторичных фаз. Как правило, один из этих механизмов в сплаве является доминирующим.

Твердый раствор алюминиевых сплавов

Твердый раствор получают нагревом алюминиевого сплава, при котором все имеющиеся в нем фазы растворяются с образованием одной гомогенной фазы – алюминия с растворенными в нем легирующими элементами. С повышением температуры растворимость элементов увеличивается, со снижением температуры – снижается. Механизм упрочнения заключается в том, что при достаточно быстром охлаждении алюминиевого сплава растворенные элементы остаются в атомной решетке алюминия и искажают, упруго деформируют ее. Эта искаженная атомная решетка затрудняет движение дислокаций и, следовательно, пластическую деформацию сплава и тем самым повышает его механическую прочность.

Старение алюминиевых сплавов

Алюминиевые сплавы, которые упрочняются старением, содержат определенное количество растворимых легирующих элементов, например, некоторых комбинаций из меди, магния, кремния, марганца и цинка. При соответствующей термической обработке эти растворенные атомы соединяются в виде очень малых частиц, которые выделяются внутри зерен алюминиевого сплава. Этот процесс и называют старением, так он происходит «сам собой» при комнатной температуре. Для ускорения и достижения большей эффективности упрочнения алюминиевого сплава старение проводят при повышенной температуре, скажем, 200 °С.

Закалка алюминиевых профилей на прессе

Закалка на прессе является весьма экономически выгодной технологией термической обработки алюминиевых профилей по сравнению с закалкой с отдельного нагрева. При закалке на прессе охлаждение алюминиевых профилей проводят от температуры, с которой они выходят из матрицы. Необходимое условие для закалки на прессе — интервал температур нагрева алюминиевого сплава под закалку должен совпадать с интервалом температур алюминиевых профилей на выходе из пресса. Это, в принципе, выполняется только для «мягких» и «полутвердых» алюминиевых сплавов – технического алюминия, алюминиевых сплавов серий 3ххх и 6ххх, а также малолегированных сплавов серии 5ххх (с магнием до 3 %) и некоторых алюминиевых сплавов серии 7ххх без легирования медью (7020, 7005 (наш 1915), 7003). Эффект закалки для алюминиевых сплавов 3ххх и 5ххх очень незначителен и, как правило, не принимается во внимание. Окончательные механические свойства алюминиевые сплавы 3ххх и 5ххх принимают не в результате термического упрочнения, а при последующей нагартовке, что может включать и операции термической обработки: один или несколько отжигов. Упрочняющей фазой для сплавов серии 6ххх является соединение Mg2Si. Подробнее см. Закалка алюминиевых профилей на прессе

Закалка на прессе сплавов АД31, 6060 и 6063

Все алюминиевые сплавы серии 6ххх могут получать закалку непосредственно на прессе. Для фиксирования растворенных фаз в твердом растворе алюминия необходимо охлаждение алюминиевых профилей на выходе из пресса со скоростью не ниже некоторой критической скорости. Эта скорость зависит от химического состава алюминиевого сплава. Обычно усиленного охлаждения вентиляторами бывает достаточно для большинства алюминиевых профилей, однако иногда бывает необходимым и охлаждение их водой или смесью воздуха и воды. Успешная закалка алюминиевых сплавов серии 6ххх зависит от толщины профиля, а также от типа сплава и его химического состава. В случае чрезмерно массивных алюминиевых профилей, например, из сплава АД33 (6061) и относительно медленной скорости прессования материал на выходе из матрицы может не достигать интервала температур, необходимого для закалки и часть частиц Mg2Si останется не растворенной. Поэтому при последующем воздушном, или даже водяном, охлаждении профилей их полной закалки не получится. В таких случаях применяют отдельный нагрев под закалку в специальных печах – обычно вертикальных с последующим охлаждением в вертикальных баках с водой. После закалки алюминиевых профилей производят их растяжение на 1,5 – 3 % для правки и снятия остаточных напряжений.

Старение алюминиевых профилей: искусственное и естественное

Заключительной операцией термической обработки алюминиевых профилей является старение, естественное или искусственное. Естественное старение происходит само собой в течение некоторого времени, разного для различных алюминиевых сплавов – от нескольких недель до нескольких месяцев. Искусственное старение производят в специальных печах старения. Типичные режимы термической обработки для некоторых алюминиевых сплавов 6ххх приведены в таблице 1.

Таблица 1

Термическая обработка алюминиевых сплавов Al-Zn-Mg

Алюминиевые сплавы Al-Zn-Mg без легирования медью (7020, 7005 (1915), 7003) также относят к «полутвердым» сплавам. Их успешно применяют при изготовлении кузовов вагонов, несущих, в том числе, сварных, конструкций. Эти алюминиевые сплавы успешно подвергаются упрочнению старением, если температура профилей на выходе из пресса составляет хотя бы 400 °С. Чаще всего их применяют вообще без принудительного охлаждения в виду их склонности к коррозии под напряжением. Вместе с тем, например, алюминиевый сплав 1915 обеспечивает даже в горячепрессованном состоянии с естественным старением от 30 до 35 суток предел прочности более 315 МПа.

Закалка алюминиевых профилей с отдельного нагрева

Алюминиевые сплавы Al—Cu—Mg и Al—Zn—Mg—Cu, а также сплавы серии Al—Mg при содержании магния более 3 % относят к труднопрессуемым. Алюминиево-магниевые сплавы не подвергаются термическому упрочнению, а процесс термического упрочнения алюминиевых сплавов Al—Cu—Mg и Al—Zn—Mg—Cu(2ххх и 7ххх) значительно отличается от термической обработки сплавов 6ххх, которые всегда закаливают на прессе. Закалку этих сплавов, например, сплавов 7075 и 2024 (Д16), производят только с отдельного нагрева, чаще всего в вертикальных печах, с последующей быстрой закалкой в вертикальных ваннах-баках с водой. Заключительную операцию термической обработки — операцию старения — проводят или при комнатной температуре (естественное старение) или при заданной повышенной температуре в течение необходимого времени (искусственное старение).

Закалка твердых алюминиевых сплавов

В таблице 2 представлены упрочняющие фазы термически упрочняемых твердых сплавов. При печном нагреве под закалку они растворяются в твердом растворе. Процесс нагрева включает выдержку при заданной температуре для достижения почти гомогенного твердого раствора. Скорость охлаждения алюминиевых профилей от температуры закалки должна превышать некоторую критическую скорость, разную для разных алюминиевых сплавов, чтобы получить максимальные прочностные свойства и сопротивление межкристаллитной в состаренном состоянии. Например, для сплава 7075 скорость охлаждения должна быть не менее чем 300 °С/c в температурном интервале от 400 до 280 °С. В закаленном состоянии алюминиевые сплавы, упрочняемые старением, являются нестабильными. При старении алюминиевых сплавов выделяются субмикроскопические частицы вторичной фазы, которые образуют нерегулярную дислокационную структуру. За счет формирования этой структуры и происходит упрочнение сплава. Размер и распределение этих выделений определяет оптимальные механические свойства алюминиевого сплава. Типичные режимы термической обработки некоторых твердых алюминиевых сплавов приведены в таблице 3. Длительность нагрева зависит от толщины алюминиевых профилей.

Таблица 2

Таблица 3

Источники: 1. Saha P. 2. Aluminium and Aluminium Alloys: ASM, 1993

Источник: aluminium-guide.ru

Старение алюминиевых сплавов

Старение сплавов серии 6ххх производят для повышения механических свойств алюминиевых профилей. Степень этого повышения свойств зависит от типа сплава и условий старения. Эти условия различаются для:

  • естественного старения, которое происходит «само собой» при комнатной температуре, и
  • искусственного старения, которое проводят при повышенных температурах, около 160-200 ºС.

Прочность сплавов серии 6ххх прямо связана с их способностью сопротивляться движению дислокаций в ходе деформирования. При приложении к материалу напряжений в нем образуются и двигаются дислокации. С увеличением напряжений количество и плотность дислокаций, двигающихся в материале, возрастает до тех пор, пока, наконец, материал не разрушается.

Движение дислокаций тормозится из-за присутствия частиц Mg 2 Si и поэтому прочность состаренного алюминиевого сплава возрастает. Размеры и плотность этих частиц контролируются параметрами старения. Небольшое количество мелких частиц β»- Mg 2 Si мало могут сделать, чтобы остановить дислокации, которые двигаются через материал, но когда их много они препятствуют движению дислокаций и это повышает прочность материала.

Если же частицы вырастают слишком большими (β’- Mg 2 Si и β- Mg 2 Si ), их становится слишком мало из-за ограниченного содержания Mg и Si в алюминии. В этом случае дислокации легко обходят эти частицы и прочность материала снижается.

Это демонстрирует схематический график типичного искусственного старения на рисунке ниже.

Пик прочностных свойств достигается при большом количестве мелких частиц β»- Mg 2 Si . Для сплавов 6ххх типичными параметрами искусственного старения являются температура 170 ºС при выдержке 8 часов или 185 ºС при выдержке 6 часов.

Т-состояния алюминиевых сплавов

Различным вариантам параметров старения соответствуют различные обозначения состояния алюминиевых сплавов:

  • Т1 – охлажденый после прессования до комнатной температуры и естественно состаренный;
  • Т4 – после прессования закаленный с отдельного нагрева и естественно состаренный;
  • Т5 – охлажденный после прессования до комнатной температуры и искусственно состаренный до максимума прочностных свойств;
  • Т6 — после прессования закаленный с отдельного нагрева и искусственно состаренный до максимума прочностных свойств.

Для обозначения других обработок старением, которые специально разработаны для получения механических свойств, которые отличаются от максимальных прочностных свойств. Например, состояния Т52 и Т591 применяются для алюминиевых профилей, которые подвергаются гибке, а состояние Т7 – для профилей, которые применяются при повышенных температурах.

Растяжение и вылеживание профилей

Обычная практика изготовления прессованных алюминиевых профилей включает их растяжение от 0,5 % до 3 % и затем вылеживание с задержкой на сутки искусственного старения для профилей из малолегированных сплавов 6ххх (не более 0,9 % Mg 2 Si) , например, алюминиевые сплавы АД31, 6060 и 6063. Это способствует достижению оптимальных механических свойств профилей после старения.

Однако такая задержка для более высокопрочных алюминиевых сплавов (содержание Mg 2 Si более 0,9 %), например, 6061, может привести к пониженным механическим свойствам материала алюминиевых профилей. Эти сплавы содержат медь в количестве не менее 0,1 %, которая противодействует влиянию задержки искусственного старения на конечные механические свойства термически упрочненных алюминиевых профилей.

Источник: aluminium-guide.ru

Старение алюминиевых сплавов

Алюминиевые сплавы набирают твердость, когда устанавливается контролируемое выпадение осадка элементов сплава (вследствие распада перенасыщения раствора, необходимого для эффективного затвердевания), и то, чтобы сформировавшийся осадок был связный (сцепленный) или частично связанный с решеткой микроструктуры основного металла.

Кинетика выпадения осадка перенасыщенного твердого раствора – это функция, т.е. химический состав. Например, для сплава 2024 старение достигается естественным путем, в то время как для сплава 7075 кинетика выпадения осадка в твердом растворе происходит только при +100 – 200°С.Сплавы, подвергающиеся естественному старению, могут быть состарены искусственно.

Но наилучшее сопротивление межгранулярной коррозии достигается искусственным путем. При естественном старении преимущество отдается характеристикам стойкости и большему сопротивлению распространению усталостных трещин.

При различных параметрах старения можно достичь одних и тех же результатов. Например, сплав 6060, достигаются одинаковые условия для 5 часов при 185 °С и для 11 часов при 170°С.

В недостаточно состаренных деталях может наблюдаться уменьшение уровня механических свойств при последующей обработке.

Перестаривание может произойти из-за пластической деформацией, выполненной после закалки до старения (посредством вальцовки, формовки, прокатки, вальцовки и др.)

Данные операции ускоряют кинетику выпадения осадка, пропорциональную степени деформации, в случаях однородной обработки (такой как растяжка, сжатие, накатывание, вальцовка).

Вообще комбинации таковые, чтобы привести сплав до максимальной твердости Т6.Т7 – большее старение, скорее перестаривание, с частичным уменьшением механических характеристик. При подобной обработке возможно увеличение стабильности по размерам изделия, которое позволяет применять изделие для работы при высоких температурах. Также можно развить большую сопротивляемость поверхностной коррозии или эксфолиативной коррозии (отшелушивание).

Изделия, которые будут работать при высоких температурах, например, части мотора могут достигать хорошей стабильности размеров только при искусственном старении, при обработке T5 очень редко в этих случаях используется материал, состаренный при естественном старении. (T1).

Сплавы с небольшим количеством легирующих веществ, такие как 6060 должны стариться до достижения максимальной твердости T6.

Для изделий, требующих большую точность (размеров) используются различные циклы обработки. В течение 1-2 часов при 175-200С после предварительной обработки (шлифование), после машинной обработки и при посреднических фазах.

На первой стадии изотермических циклов старения. Например, 6 часов при температуре 100°С, до 3часов при температуре 120°С. На второй стадии температура и время должно контролироваться, т.к. может вызвать изменения в физических свойствах детали. Температура в печи должна быть однородной.

Нежелательные эффекты перестаривания деталей могут быть вызваны продолжительным процессом, вызванным низкой скоростью разогрева, вызванной перегрузкой печи.

Время между закалкой (охлаждением) и старением не влияет на старение профиля. Но, необходимо помнить, что в некоторых сплавах серии 6060 механические свойства будут несколько более высокими, если старение выполнено немедленно после закалки. В то время как другие сплавы требуют выдержки при температуре окружающей среды перед старением для лучших механических свойств.

Максимальный интервал, предусмотренный между растворением веществ и закалкой (задержка закалки).

Источник: vseokraskah.net

Зона термического влияния алюминия

При сварке чистого алюминия и сплавов, не упрочняемых термообработкой, в зоне теплового воздействия наблюдается лишь рост зерна и некоторое их разупрочнение, вызванное снятием нагартовки (если сплав сваривался в нагартированном состоянии). Интенсивность роста зерна и разупрочнения нагартованного сплава при сварке может изменяться в зависимости от метода сварки, режимов и величины предшествовавшей нагартовки. Практика показывает, что даже в условиях газовой сварки, отличающейся наиболее длительным нагревом металла, сварные соединения, выполненные из этих сплавов, по прочности не уступают прочности основного металла в отожженном состоянии.

Тепловая свариваемость алюминиево-магниевых сплавов с большим содержанием магния (АМг5В и АМг6), относящихся также к группе сплавов, не упрочняемых термически, осложняется повышенной чувствительностью их к нагреву и склонностью к вспучиванию в участках основного металла, непосредственно примыкающих к шву. Склонность к вспучиванию в зонах теплового воздействия возрастает с увеличением в сплавах содержания магния и длительности нагрева при сварке. Поэтому вспучивание металла в околошовных зонах наблюдается в первую очередь при сварке их газовым пламенем и в меньшей степени при дуговой сварке.

Большинство авторов работ, посвященных исследованию этого явления, приходит к выводу, что основной причиной вспучивания и образования несплошностей могут быть реакция магния с парами воды, накопление водорода в несплошностях и увеличение в них давления.

В настоящее время установлено, что вспучивание в околошовных зонах наблюдается лишь при сварке металла определенных полуфабрикатов и плавок. Вспучивание металла при нагреве вызывает молекулярный водород, заполняющий микронесплошности, образовавшиеся в процессе деформации и обжатия мелких газовых пузырьков, которые возникают при кристаллизации слитка на базе дисперсных оксидных включений, имеющихся в недостаточно тщательно рафинированном металле. В участках металла, нагревающихся до температуры, близкой к температуре плавления, в связи с его разупрочнением происходит увеличение в объеме закатанных пузырьков и вспучивание металла.

Концентрация растворенного водорода в металле промышленных слитков, отлитых непрерывным литьем, не превышает 0,15— 0,3 см3/100 г, что совпадает с расчетными данными растворимости водорода в сплаве при температурах нижней границы эффективного интервала кристаллизации. В связи с этим для контроля качества свариваемого металла необходимо в первую очередь определять в нем содержание молекулярного водорода.

Для этих целей предназначена тепловая проба МАТИ. Цилиндрический образец диаметром 15 мм, длиной 25 мм, изготовленный из контролируемого металла, нагревают в печи при температуре 580 + 5°С в течение 15 мин. После остывания из образца изготовляют шлиф. Наличие в металле образца макронесплошностей и расслоений свидетельствует о недостаточно высоком качестве металла и повышенном содержании молекулярного водорода.

При сварке сплавов, упрочняемых термообработкой, в зонах около шва происходят изменения, существенно снижающие свойства свариваемого металла. Замеры твердости и изучение структуры металла в зоне термического влияния сварных соединений из сплавов, упрочняемых термообработкой, позволяют обнаружить в ней участки металла с различной степенью распада твердого раствора и коагуляции упрочнителя.

Самое опасное изменение, вызывающее в большинстве случаев резкое снижение свойств металла и образование трещин, — оплавление границ зерен. Появление жидких прослоек между зернами приводит к снижению механических свойств металла в нагретом состоянии и нередко к образованию трещин. После сварки в участках оплавления металл хрупко разрушается и прочность его снижается. Изучение структурных изменений, протекающих в околошовных зонах при сварке промышленных сплавов сложного легирования, сопряжено с определенными трудностями в связи с наличием в сплавах большого количества фаз сложного состава.

Наиболее простой моделью для изучения процессов, протекающих в околошовных зонах при сварке, может быть двойной алюминиево-медный сплав, содержащий 4 % Сu.

При медленном охлаждении сплава, содержащего 4 % Сu, от температуры выше эвтектической концентрация меди уменьшается в соответствии с кривой растворимости (рис. 9.5). Медь, находившаяся в твердом растворе, выделяется в виде фазы СuАl2 (θ-фаза). При нормальной температуре охлажденный таким образом сплав состоит из зерен раствора меди в алюминии с концентрацией 0,1—0,2 % Си и частиц фазы СuА12, распределенных в объеме зерна и по границам зерен.

Рис. 9.5. Алюминиевый угол диаграммы состояния системы Al-Сu

При быстром охлаждении этого же сплава из области α-твердого раствора до нормальной температуры выделение фазы СuА12 можно задержать и зафиксировать медь в растворе. Если не учитывать, что в сплаве присутствуют нерастворимые фазы, образованные примесями, то после быстрого охлаждения сплав должен представлять собой однородный раствор меди в алюминии с содержанием 4 % Сu.

Пересыщенный раствор меди в алюминии неустойчив. Даже при нормальной температуре в нем протекают процессы, приводящие к повышению его прочности и снижению пластичности,— происходит старение сплава.

При естественном старении выделение второй фазы отсутствует, и пересыщенный раствор меди в алюминии сохраняется. Повышение прочности металла объясняется перемещением атомов меди на небольшие расстояния, сопровождающиеся собиранием ее на плоскостях куба (100) решетки в двумерные пластинчатые образования, названные зонами Гинье—Престона. Эта неравномерность п распределении атомов меди приводит к искажениям решетки, увеличению прочности и твердости сплава.

Нагрев сплава выше температуры 150 °С вызывает дальнейшее развитие возникших образований. Плоскости, обогащенные медью, занимают определенный порядок между соседними плоскостями алюминиевых атомов. Появление сверхструктуры рассматривается как переходная стадия к выделению из раствора упрочнителя. При нагреве до температуры выше 200 °С на базе сверхструктуры образуется промежуточная фаза θ’; ее состав соответствует фазе θ (СuАl2), а кристаллическая решетка отличается от решетки алюминия и фазы 6.

При температуре выше 300 °С образуется стабильная фаза θ. Появление метастабильной фазы θ’ приводит к значительному упрочнению сплава и снижению его пластичности.

В соответствии со сказанным различают естественное старение, протекающее при нормальных температурах, и искусственное при температуре выше 150— 200 °С. Первый вид старения назван И. Н. Фрлдляндером зонным старением, а второй — фазовым.

Для понимания процессов, протекающих в околошовных зонах при сварке сплавов, упрочняемых термообработкой, важное значение имеют некоторые особенности распада пересыщенных твердых растворов. Появление частицы новой фазы другого объема сопровождается упругими искажениями решетки матрицы.

Если упругая энергия, концентрирующаяся вокруг частицы новой фазы, велика, то появление ее становится более вероятным в первую очередь на границе зерен, где имеются дефекты решетки. Этому же способствует повышенная концентрация на границах зерен растворенных атомов, имеющих атомный радиус, отличающийся от атомного радиуса растворителя.

В связи с этим при быстром нагреве пересыщенного раствора до высоких температур, характерном для условий сварки, можно ожидать появления второй фазы, в первую очередь по границе зерен.

При сварке отожженного сплава в зоне термического влияния но мере повышения максимальной температуры нагрева металла в соответствии с диаграммой состояния происходят процессы растворения выпавшего упрочнителя. Особенно заметны процессы растворения дисперсных выделений второй фазы в объеме зерна в участке металла, нагревавшемся выше температуры 350 °С. На границе этого участка наблюдается как бы просветление фона за счет исчезновения более мелких частиц упрочнителя, выделившегося по объему зерна, и повышение твердости раствора.

По мере повышения температуры нагрева более четко начинают просматриваться границы зерен в связи с укрупнением выделений упрочнителя на их границах. Этот процесс продолжается в участке металла, нагревавшемся от 500 °С до температуры плавления эвтектики (548 °С). В этом участке по мере повышения температуры нагрева наряду с утолщением границ зерен становится более заметной белая полоска обедненной медью периферийной части зерна, примыкающей к выделениям второй фазы на границе раздела зерен (рис. 9.6).

Рис. 9.6. Оплавление границ зерен в участке околошовной зоны сварного соединения сплава алюминия с 4 % Сu: 1 — оплавленная граница зерна; 2 — светлая оторочка периферии зерна; 3 — участок зерна с нормальной травимостью

На участке металла, нагревавшемся в интервале температуры между солидусом и температурой плавления эвтектики (548 °С), по границам зерен появляются жидкие прослойки, что, по-видимому, можно объяснить развитием контактного плавления между частицами упрочнителя — фазы СuАl2 — и твердым раствором. Процесс контактного плавления, сопровождающийся появлением на границе зерна жидких прослоек, приводит к обеднению медью периферийных участков зерна, примыкающих к оплавленной границе.

При сварке закаленного и искусственно состаренного сплава заметное изменение травимости зерен и более четкое выявление их границ наблюдается в участках металла, нагревавшихся в процессе сварки до температуры выше 500 °С. По-видимому, это связано с частичной коагуляцией упрочнителя, выделившегося в объеме зерна и по границам зерен. Однако согласно равновесной диаграмме состояния системы Аl—Сu (см. рис. 9.5) при температуре 500 °С вместо коагуляции выделившегося упрочнителя должно было бы произойти его дополнительное растворение.

Причина кажущегося несоответствия обнаруженных структурных изменений с равновесной диаграммой состояния состоит в следующем. Распад раствора при высоких температурах начинается с появления устойчивых зародышей второй фазы на границах зерна, их развития за счет притока атомов меди из пограничных участков зерна и затем выделения упрочнителя в объеме зерна.

Для теплового воздействия при сварке характерны быстрый нагрев металла до максимальных температур и более медленное последующее его охлаждение.

При сварке искусственно состаренного сплава в период быстрого нагрева до температуры 500 °С коагуляция упрочнителя происходить не успевает. Наоборот, начиная с температуры 500 °С и выше возможно даже частичное растворение дисперсных выделений второй фазы в объеме зерна. В процессе последующего охлаждения, начиная с температуры 500 °С и ниже, продолжается высокотемпературный распад твердого раствора, сопровождающийся образованием зародышей упрочнителя, в первую очередь по границам зерна, и их развитием за счет притока атомов меди из прилежащих периферийных участков зерен, что приводит к появлению светлых оторочек по их границам и усилению травимости основной части зерна за счет коагуляции дисперсных выделений второй фазы в объеме зерна.

По мере повышения температуры максимального нагрева увеличивается время существования металла в интервале температур 500—300 °С и создаются условия для более полного распада раствора и коагуляции выпавшего упрочнителя. Поэтому по мере приближения к шву постепенно снижается твердость металла, утолщаются границы зёрен и резче выявляются светлые оторочки на границах зерен, представляющие собой обедненный медью раствор алюминия.

В интервале температур между солидусом и температурой плавления эвтектики наблюдается оплавление границ зерен. Оплавление границ и в этом случае вызывает контактное плавление, развивающееся между частицами фазы СuАl2, выделявшимися по границам зерен, и твердым раствором меди и алюминия.

Рассмотренный выше механизм оплавления границ зерна характерен для большинства термообрабатываемых сплавов, способных подвергаться старению. В отличие от бинарного алюминиево-медного сплава, рассмотренного в качестве модели при сварке сплавов сложного легирования, меняется состав упрочняющих фаз и образующихся в результате контактного плавления эвтектик.

Приведенная выше точка зрения на причины и механизм оплавления границ зерен при сварке сплавов, упрочняемых термообработкой, не является единственной и общепринятой. Существует также мнение, что основная причина оплавления границ зерен связана с наличием в сплаве равновесной эвтектики при высокой степени легирования сплавов или неравновесной эвтектики, образующейся при кристаллизации слитка в условиях, далеких от равновесных.

Некоторые исследователи склоняются также к мысли о том, что оплавление границ зерен происходит в участке металла зоны термического влияния, нагревающегося в процессе сварки выше температуры солидуса — высокотемпературной области. Зона, обедненная упрочнителем, и оплавленная эвтектика появляются в процессе последующей неравновесной кристаллизации оплавленной границы зерна.

Опыт сварки сплавов типа дуралюминов (Д1 и Д16) показывает, что независимо от метода сварки и исходного состояния металла во всех случаях в непосредственной близости от шва наблюдается зона оплавления границ зерна. Ширина этой зоны меняется в зависимости от метода и режимов сварки. Наиболее широкая зона появляется при газовой сварке и более узкая — при автоматической дуговой.

Характер распределения эвтектики в этой зоне изменяется в зависимости от исходного состояния сплава. В сварных соединениях, полученных при дуговой сварке закаленного сплава, эвтектика располагается в виде сплошной прослойки вокруг зерен твердого раствора, в то время как в соединениях из отожженного металла в залегании эвтектики появляются несплошности.

При газовой сварке дуралюмина Д16 в закаленном состоянии трудно получить соединение без трещин. При дуговой сварке в аргоне и по флюсу прочность соединений из закаленного сплава колеблется в пределах 290-320 МПа, а при сварке в отожженном состоянии около 220 МПа.

В связи с наличием сплошной сетки оплавленной эвтектики сварные соединения из закаленного металла имеют низкую пластичность и легко разрушаются при небольшой деформации и вибрационных или динамических нагрузках. При сварке жестких узлов из закаленного металла по границе сплавления часто возникают трещины. Последующей термообработкой не удается восстановить свойства металла в этой зоне. При сварке образцов из алюминиевых сплавов типа дуралюминов с применением очень резкого охлаждения удалось значительно сократить ширину зоны с оплавленными границами зерен и повысить свойства сварных соединений. Однако применение таких скоростей охлаждения в производственных условиях трудноосуществимо.

Проблема сварки высокопрочных алюминиевых сплавов, упрочняемых термообработкой, может быть решена при условии создания специальных свариваемых сплавов этой группы. Вопросам создания свариваемых высокопрочных сплавов, упрочняемых термообработкой, уделяется много внимания. В нашей стране разработан ряд сплавов этой группы, имеющих лучшую тепловую свариваемость: ВАД1, М40 и др. Перспективны самозакаливающиеся сплавы, построенные на основе тройной системы Аl-Zn-Mg (В92Ц, АЦМ, 1915 и др.), а также сплавы на основе системы А1-Сu-Мn (типа 1201) и сплавы на основе системы Аl-Mg-Li (типа 1420).

Старение закаленных сплавов алюминия

После закалки алюминиевого сплава следует старение, когда сплав выдерживают при комнатной температуре несколько суток (естественное старение) или в течение 10 — 24 ч при повышенной температуре (искусственное старение).

В процессе старения происходит распад пересыщенного твердого раствора, что сопровождается упрочнением сплава. Распад пересыщенного твердого раствора, в решетке которого атомы меди располагаются статистически равномерно, происходит в несколько стадий в зависимости от температуры и продолжительности старения. При естественном (при 20°С) или низкотемпературном искусственном старении (ниже 100 — 150°С) не наблюдается распада твердого раствора с выделением избыточной фазы; при этих температурах атомы меди перемещаются только внутри кристаллической решетки α-твердого раствора на весьма малые расстояния и собираются по плоскостям в пластинчатые образования или диски — зоны Гинье — Престона (ГП-1). Зоны ГП-1 в сплавах Al-Cu протяженностью 1—10 нм и толщиной 0,5—1 нм более или менее равномерно распределены в пределах каждого кристалла. Концентрация меди в зонах ГП-1 меньше, чем в CuAl2 (54%) .

Термическая обработка алюминиевых сплавов

Введение

Для упрочнения алюминиевых сплавов применяют закалку и старение. Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.

Закалка алюминиевых сплавов

Закалка заключается в нагреве сплавов до температуры, при которой, избыточные интерметаллидные фазы полностью или большей частью растворяются в алюминии, выдержке при этой температуре и быстром охлаждении до комнатной температуры для получения пересыщенного твердого раствора. Например, температура закалки сплавов системы Аl–Сu (рис.1) определится линией abc

, проходящей выше линии предельной растворимости для сплавов, содержащих меньше 5,7 % Сu, и ниже эвтектической линии (548 °С) для сплавов, содержащих большее количество Сu. При нагреве под закалку сплавов, содержащих до ~ 5 % Сu, избыточная фаза СuА12 полностью растворяется, и при последующем быстром охлаждении фиксируется только пересыщенный α-твердый раствор, содержащий столько меди, сколько ее находится в сплаве (рис.2в). При содержании более 5 % Си в структуре сплавов после закалки будет пересыщенный α-твердый раствор состава, отвечающего точке
b
, и нерастворенные при нагреве кристаллы соединения СuАl2. Время выдержки при температуре закалки, необходимое для растворения интермегаллидных фаз, зависит от структурного состояния сплава, типа печи и толщины изделия. Листы, плиты, прутки, полосы толщиной 0,5–150 мм выдерживают нагрев в селитровых ваннах 10–80 мин, а в наиболее широко применяемых для этой цели электропечах с принудительной циркуляцией воздуха – 30–210 мин. Выдержка фасонных отливок при температуре закалки более длительная (2–15 ч). За это время растворяются грубые выделения иитерметаллидных фаз (рис.2а). Охлаждение деформированных сплавов при закалке производят в холодной воде, а фасонных отливок – в подогретой воде (50–100 °С) во избежание их коробления и образования трещин. После закалки сплавы имеют сравнительно невысокую прочность σв, σ0,2 и высокую пластичность (delta;, ψ).

Рис.1.
Диаграмма состояния Al–Cu


Рис.2.
Микроструктура сплавов алюминия: а – литой сплав Al + 12 % Cu (α-раствор и кристаллы эвтектики α + CuAl2 и CuAl2); б – литой сплав Д16 (α-раствор и кристаллы CuAl2 и Al2MgCu); в – сплав Д16 после закалки (α-фаза); г – сплав Д16 после закалки и старения

Старение закаленных сплавов

После закалки следует старение, при котором сплав выдерживают при нормальной температуре несколько суток (естественное старение) или в течение 10–24 ч при повышенной температуре (искусственное старение). В процессе старения происходит распад пересыщенного твердого раствора, что сопровождается упрочнением сплава. Распад пересыщенного твердого раствора происходит в несколько стадий в зависимости от температуры и продолжительности старения. При естественном (при 20 °С) или низкотемпературном искусственном старении (ниже 100–150 °С) не наблюдается распада твердого раствора с выделением избыточной фазы; при этих температурах атомы меди перемещаются только внутри кристаллической решетки α-твердого раствора на весьма малые расстояния и собираются по плоскостям (100) в двумерные пластинчатые образования (рис.3а) или диски – зоны Гинье-Престона (ГП–1). Эти зоны ГП–1 протяжностью в несколько десятков ангстрем (30–60 Å) и толщиной 5–10 Å более или менее равномерно распределены в пределах каждого кристалла. Концентрация меди в зонах ГП–1 меньше, чем в СuАl2 (54 %).


Рис.3.
Схема выделения избыточных фаз из твердого раствора при старении: а) – зоны ГП–1; б) – зоны ГП-2; в) – θ′-фаза; г) — θ-фаза (СuАl2)

Если сплав после естественного старения кратковременно (несколько секунд или минут) нагреть до 230–270 °С и затем быстро охладить, то упрочнение полностью снимается, и свойства сплава будут соответствовать свежезакаленному состоянию. Это явление получило название возврат

. Разупрочнение при возврате связано с тем, что зоны ГП–1 при этих температурах оказываются нестабильными и поэтому растворяются в твердом растворе, а атомы меди вновь более или менее равномерно распределяются в пределах объема каждого кристалла твердого раствора, как и после закалки. При последующем вылеживаний сплава при комнатной температуре вновь происходит образование зон ГП–1 и упрочнение сплава. Однако после возврата и последующего старения ухудшаются коррозионные свойства сплава, что затрудняет использование возврата для практических целей. Длительная выдержка при 100 °С или несколько часов при 150 °С приводит к образованию зон ГП–2 большей величины (толщина 10–40 Å и диаметр 200–300 Å) с упорядоченной структурой, отличной от α-твердого раствора (рис.3б). Концентрация меди в них соответствует содержанию ее в СuАl2. С повышением температуры старения процессы диффузии, а следовательно, и процессы структурных превращений, и самоупрочнение протекают быстрее. Выдержка в течение нескольких часов при 150–200 °С приводит к образованию в местах, где располагались зоны ГП–2, дисперсных (тонкопластинчатых) частиц промежуточной θ′-фазы, не отличающейся по химическому составу от стабильной фазы θ (СuАl2), но имеющей отличную кристаллическую решетку; θ′-фаза когерентно связана с твердым раствором (рис.3в). Повышение температуры до 200–250 °С приводит к коагуляций метастабильной фазы и к образованию стабильной θ-фазы (рис.3г).

Таким образом, при естественном старении образуются лишь зоны ГП–1. При искусственном старении последовательность структурных Изменений можно представить в виде следующей схемы: ГП–1 → ГП–2 → θ′ → θ (СuAl2).

Это общая схема распада пересыщенного твердого раствора в сплавах Аl–Сu справедлива и для других сплавов. Различие сводится лишь к тому, что в разных сплавах неодинаков состав и строение зон, а также образующихся фаз.

Для стареющих алюминиевых сплавов разных составов существуют и свои температурно-временные области зонного (образование ГП–1 и ГП–2) и фазового (θ′- и θ-фаз) старения.

После зонного старения сплавы чаще имеют повышенный предел текучести и относительно невысокое отношение σ0,2/σв ≤ 0,6÷0,7, повышенную пластичность, хорошую коррозионную стойкость и низкую чувствительность к хрупкому разрушению.

После фазового старения отношение σ0,2/σв повышается до 0,9–0,95, а пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

Структурное упрочнение

Температура рекристаллизации некоторых сплавов алюминия с марганцем, хромом, никелем, цирконием, титаном и другими переходными металлами превышает обычно назначаемую температуру нагрева под деформацию или закалку, поэтому после закалки и старения таких сплавов в них сохраняется перекристаллизованная (полигонизованная) структура с высокой плотностью дислокаций, что повышает ее прочность по сравнению с рекристаллизованной структурой. Это явление получило название структурного упрочнения

.

В результате структурного упрочнения значения σв, σ0,2 повышаются до 30–40 %. Наиболее сильно структурное упрочнение проявляется в прессованных полуфабрикатах (прутки, профили, трубы), поэтому это явление применительно к ним называют пресс-эффектом

.

Гомогенизационный отжиг

Этому виду отжига подвергают слитки перед обработкой давлением, для устранения дендритной ликвации, которая приводит к получению неоднородного твердого раствора и выделению по границам зерен и между ветвями дендритов хрупких неравновесных эв-тектических включений СuAl2, Al2CuMg (S-фаза), Mg2Si, Al3Mg2Zn2 (Т-фаза и др.). В процессе гомогенизации состав кристаллитов твердого раствора выравнивается, а интерметаллиды растворяются. В процессе последующего охлаждения интерметаллиды выделяются в виде равномерно распределенных мелких вторичных включений. Вследствие этого пластичность литого сплава повышается, что позволяет увеличить степень обжатия при горячей обработке давлением, скорость прессования и уменьшить технологические отходы. Гомогенизация способствует получению мелкозернистой структуры в отожженных листах и уменьшает склонность к коррозии под напряжением. Температура гомогенизации в пределах 450–520 °С, а выдержка от 4 до 40 ч. Охлаждение проводят на воздухе или вместе с печью.

Рекристаллизационный отжиг

Такой отжиг заключается в нагреве деформированного сплава до температур выше температуры окончания первичной рекристаллизации; применяется для снятия наклепа и получения мелкого зерна. Температура рекристаллизованного отжига в зависимости от состава сплава колеблется от 350 до 500 °С, выдержка 0,5–2,0 ч. После рекристаллизационного отжига сплавов, не упрочняемых термической обработкой, скорость охлаждения выбирают произвольно. Для сплавов, упрочняемых термической обработкой скорость охлаждения до 200–250 °С должна быть ≤ 30 °С/ч. Отжиг в качестве промежуточной операции применяют при холодной деформации или между горячей и холодной деформациями.

Отжиг для разупрочнения сплавов, прошедших закалку и старение

Этот вид отжиги проводят при 350–450 °С с выдержкой 1–2 ч. При этих температурах происходит полный распад пересыщенного твердого раствора и коагуляция упрочняющих фаз. Скорость охлаждения не должна превышать 30 °С/ч. После отжига сплав имеет низкий предел прочности, удовлетворительную пластичность и высокую сопротивляемость коррозии под напряжением.

Пресс-эффект

Температура рекристаллизации некоторых сплавов алюминия с марганцем, хромом, никелем, цирконием, титаном и другими переходными металлами, подвергнутых по определенным режимам горячей, а в некоторых случаях и холодной обработке давлением, превышает обычно назначаемую температуру нагрева под деформацию или закалку. Поэтому после закалки и старения таких сплавов в них сохраняется нерекристаллизованная (полигонизованная) структура с высокой плотностью дислокаций, что значительно повышает прочность по сравнению с рекристаллизованной структурой. Это явление получило название структурного упрочнения.Структурное упрочнение по существу является высокотемпературной термо-механической обработкой.

В результате структурного упрочнения значения σ0,2 и σв повышаются до 30 — 40%. Наиболее сильно структурное упрочнение проявляется в прессованных полуфабрикатах (прутки, профили, трубы), поэтому это явление применительно к ним называют пресс-эффектом.

Источник: www.metmk.com.ua

Термообработка алюминиевых сплавов

Термическая обработка алюминиевых сплавов предназначена для корректировки характеристик материала с помощью воздействия высоких температур. Различными способами обработки можно добиться широкого разнообразия структуры и свойств.

Сплавы, которые содержат примеси в размере 15-18%, имеют вид твердого раствора. В качестве дополнительных компонентов применяются медь, магний, цинк, кремний и другие вещества, различное сочетание которых и их процентное соотношение прямо пропорционально влияют на свойства материала.

В обычном состоянии алюминиевые сплавы не отличаются высокой прочностью, при этом довольно пластичны. Наиболее неустойчивые сплавы включают в состав большое количество легирующих компонентов, которые влияют на равновесную структуру.

Для упрочнения алюминиевых сплавов применяется методы термообработки. Путем равномерного нагрева, который регламентируется техническими условиями, получают соответствующую структуру, необходимую для начальной стадии распада твердого раствора.

С помощью термообработки можно получить множество типов структуры материала, которые соответствуют требованиям производства. Термическая обработка позволяет создать структуру, не имеющую аналогов.

На сегодняшний день разработано множество методов термообработки алюминиевых изделий, среди которых наибольшую популярность обрели три: отжиг, закалка, старение.

Основные виды

Цель данной статьи рассмотреть возможные варианты применения оборудования для различных видов термообработки изделий из алюминиевых сплавов. В данной статье не рассматривается оборудование для получения отливок и печи на газовом топливе.
Термообработку алюминиевых сплавов производят для получения необходимой структуры и соответственно механических свойств, как на стадии заготовки, так и уже в готовых изделиях.

Для термообработки существует пять основных видов манипуляций со свойственными им методами нагрева и охлаждения. Чтобы получить нужные физические свойства применяют тот или иной метод нагрева.

Отжиг первого рода

Предусмотрен для снятия литейных или термических остаточных напряжений, устранение наклёпа, при таком нагреве в структуре металла не происходит фазовых превращений.

Отжиг второго рода

Предусмотрен для изменения структуры материала посредством перекристаллизации. Заготовки нагревают выше критических температур и медленно охлаждают. В результате изменяется размер зёрен, их форма, распределение частиц вторых фаз.

Закалка алюминиевых сплавов

предназначена для закрепления неравновесных (метастабильных) структурных состояний. Свежезакаленое изделие мягкое, как после отжига сталей, его можно деформировать. Но по истечении 4-6 дней металл самоупрочняется.

Исходная структура до закалкиСтруктура после закалки

Схема изменения строения сплава алюминия, содержащего 4% Cu (после закалки)

Отпуск (старение)

предназначен для придания нужных свойств изделиям. В зависимости от температуры происходит упрочнение или разупрочнение.

Особенности термообработки алюминиевых сплавов

Алюминий и его сплавы требуют особого подхода к термообработке для достижения определенной прочности и структуры материала. Очень часто применяют несколько методов термообработки. Обычно, после закалки следует старение. Но некоторые типы материалов могут подвергаться старению без закалки.

Такая возможность появляется после отливки, когда компоненты, при повышенной скорости охлаждения, могут придать металлу необходимую структуру и прочность. Это происходит во время литья при температуре около 180 градусов. При такой температуре повышается уровень прочности и твердости, а также снижается степень тягучести.

Каждый из методов термообработки имеет некоторые особенности, которые стоит учитывать при обработке алюминиевых изделий.

Отжиг необходим для придания однородной структуры алюминиевому сплаву. С помощью этого метода состав становиться более однородным, активизируется процесс диффузии и выравнивается размер базовых частиц. Также можно добиться снижения напряжения кристаллической решетки. Температура обработки подбирается индивидуально, исходя из особенностей сплава, необходимых конечных характеристик и структуры материала.

Состав и свойства алюминиевых сплавов, упрочняемых термической обработкой

Важным этапом отжига является охлаждение, которые можно проводить несколькими способами. Обычно проводят охлаждения в печи или на открытом воздухе. Также применяется поэтапное комбинированное охлаждение, сначала в печи, а потом на воздухе.

От скорости снижения температуры напрямую зависят характеристики готового материала. Быстрое охлаждение способствует образованию перенасыщенности твердого раствора, а медленное – значительного уровня распада твердого раствора.

Закалка требуется для упрочнения материала путем перенасыщения твердого раствора. Этот метод основан на нагреве изделий температурам и быстром охлаждении. Это способствует полноценному растворению составных элементов в алюминии. Используется для обработки деформируемых алюминиевых сплавов.

Методы отжига алюминиевых листов

Отжиг алюминиевых сплавов не является обязательным к применению. Но в некоторых случаях без этого способа термообработки невозможно достичь желаемых характеристик материала.

Причиной применения отжига может стать особое состояние сплава, которое может выражаться в понижении пластичности материала.

Применение отжига рекомендуется при наблюдении трех типов состояний:

  1. Свойственное литым изделиям неравновесное состояние связано с разницей температурных режимов. Скорость охлаждения литых изделий значительно превышает рекомендуемую, при которой достигается эффект равновесной кристаллизации.
  2. Пластическая деформация. Такое состояние может быть вызвано технологическими требованиями к характеристикам и форме готового изделия.
  3. Неоднородная структура материала, вызванная иными методами термообработки, в том числе закалкой и старением. В таком случае происходит выделение одного из легирующих компонентов в интерметаллидную фазу, сопровождающуюся перенасыщением компонентов.

Вышеуказанные проблемы могут устранятся методом отжига. Нормализация структуры и состояния алюминиевого сплава сопровождается повышением пластичности. В зависимости от типа неравновесного состояния подбираются различные методы отжига.

На сегодняшний день выделяют три режима отжига:

  1. Гомогенизация. Предназначен для обработки литых слитков. В процессе термической обработки слитков при высоких температурах достигается равномерная структура. Это позволяет упростить процесс проката с уменьшением количества производственных расходов. В некоторых случаях может применяться для повышения качества деформированных изделий. Температура отжига соблюдается в пределах 500 градусов с последующей выдержкой. Охлаждение можно проводить несколькими способами.
  2. Рекристаллизация. Применяется для восстановления деформированных деталей. При этом требуется предварительная обработка прессом. Температура отжига варьируется в диапазоне от 350 до 500 градусов. Время выдержки не превышает 2-х часов. Скорость и способ охлаждения не имеет особых рамок.
  3. Гетерогенизация. Дополнительная отжиг после других методов термообработки. Этот метод необходим для разупрочнения алюминиевых сплавов. Данный метод обработки позволяет понизить степень прочность с одновременным повышением уровня пластичности. Отжиг производится примерно при 400 градусах Цельсия. Выдержка обычно составляет 1-2 часа. Этот тип отжига значительно улучшает эксплуатационные характеристики металла и повышают степень сопротивления коррозии.

Общая информация о печах

Отличительные особенности алюминиевых сплавов, такие как значительно большая теплоёмкость, точность нагрева в пределах ±3°С, теплопроводность, структура, температура плавления, концентрации легирования не всегда позволяют использовать электропечи для термообработки сталей. Эти особенности необходимо учитывать при выборе оборудования для термообработки сплавов на основе алюминия. Для термической обработки применяются низкотемпературные печи, характерным признаком которых является передача большей части тепла нагреваемым изделиям усиленной конвекцией

, поэтому применяются мощные
вентиляторы
перемешивания газа в рабочей камере и распределённой схемы направления конвекционных потоков. В зависимости от типа производства электропечи могут быть периодического (садочного типа) так и непрерывного действия (проходные).

Камерные электропечи с неподвижным подом применяются отжига, закалки, старения мелких и средних деталей в мелко и среднесерийном производстве. Преимущество таких печей в доступности и надёжности. Недостаток — в отсутствии механизации.

Камерные электропечи с выкатным подом применяют для термической обработки крупногабаритных отливок, профилей, поковок преимущественно под отжиг, отпуск или старение и т.д. Преимущества в возможности загрузки больших партий заготовок. Недостаток таких конструкций, в больших занимаемых площадях. В случае применения подобных печей затруднительно производить операцию закалки из-за подстуживания заготовок во время выката пода и выгрузки.

Шахтные электропечи получили широкое распространение для термообработки фасонного литья. Они минимально занимают площадь цеха, имеют относительно высокую производительность, чем камерные.

Конвейерные электропечи широко применяются для термической обработки. Толкательные или рольганговые печи. Здесь заготовки загружают в контейнер, который по направляющим проталкивают либо катят через всю тепловую камеру. Преимущество проходных исполнений в том, что они легко соединяются другими установками в агрегаты и линии. Эти печи применяют, как правило, в крупносерийном производстве.

Особенности конструкции установок для проведения отжига

После первичного нагрева, для некоторых видов отжига, необходима фиксированная скорость охлаждения, меньше, чем на воздухе. Для этого в корпусе должны быть отверстия, закрываемые во время прогрева и выдержки. Во время охлаждения, деталей с печью, эти отверстия приоткрываются и через них поступает воздух, нагнетаемый вентилятором.

Особенности конструкции термического оборудования для упрочнения алюминиевых сплавов

Нагрев под закаливание деталей является ответственной операцией, и успешное осуществление её зависит в основном от равномерного распределения температуры в нагревательной камере и возможности ее регулирования в ограниченных пределах (±3℃)

. Диапазон температур под закалку составляет
500-550 ℃
. Если металл перегреть, то по периметру зёрен образуется жидкая фаза, происходит усадка, появляется микропористость, со значительным снижением прочности и пластичности. Нагреватели должны размещаться в потокообразующих каналах. Управляющий температурой прибор «Терморегулятор» должен иметь механизм сведения температуры (точной подстройки) в диапазоне 480-530℃, что обеспечит необходимую точность нагрева под закалку (±3℃).

Особенности приёмов термообработки

После прогрева и выдержки перемещение заготовок из камеры в закалочный бак необходимо провести максимально быстро, не дольше 5-7 сек. Охлаждение должно вестись максимально интенсивно. Начинать охлаждение необходимо с температуры выдержки. Это означает что время переноса деталей из камеры в закалочный бак (вода) должно быть минимально, этого можно достичь механизацией перемещения садки в закалочный бак. Закалочный бак должен иметь мощную систему перемешивания воды, большую мощность теплообменника охлаждения.

Закалка алюминиевых отливов

Закалка подходит не для всех типов алюминиевых сплавов. Для успешного структурного изменения, сплав должен содержать такие компоненты как медь, магний, цинк, кремний или литий. Именно эти вещества способны полноценно растворится в составе алюминия, создав структуру, имеющую отличные от алюминия свойства.

Данный тип термообработки проводиться при интенсивном нагреве, позволяющем составным элементам раствориться в сплаве, с дальнейшим интенсивным охлаждением до обычного состояния.

Термические превращения в сплавах 6060, 6063, АД31

При выборе температурного режима следует ориентироваться на количество меди. Также, нужно учитывать свойства литых изделий.

В промышленных условиях температура нагрева под закалку колеблется в диапазоне от 450 до 560 градусов. Выдержка изделий при такой температуре обеспечивает расплавление компонентов в составе. Время выдержи зависит от типа изделия, для деформированных обычно не превышает более часа, а для литых – от нескольких часов до двух суток.

Скорость охлаждения при закалке необходимо подбирать так, чтобы состав алюминиевого сплава не подвергался распаду. На промышленном производстве охлаждение проводят с помощью воды. Однако такой способ не всегда оптимально подходит, так как при охлаждении толстых изделий происходит неравномерное снижение температуры в центре и по краям изделия. Поэтому для крупногабаритных и сложных изделий применяются другие методы охлаждения, которые подбираются индивидуально.

Старение алюминиевых сплавов

Старение проводится для улучшения прочностных характеристик изделия. Этот вид термической обработки заключается в выдержке в условиях обычного температурного режима.

Повышение прочности достигается путем распада твердого раствора, что необходимо после закалки, так как закалка приводит к пресыщенности металла.

Существует два способа старения алюминиевых сплавов: естественное и искусственное.

Естественное старение происходит без предварительного нагрева при обычных температурах. Это может происходить в условиях обычного склада или промышленного помещения, где температура воздуха не превышает 30 градусов.

Естественное старение возможно из-за особого свойства алюминия, которое называется «свежезакаленное состояние». Свойства изделий значительно отличаются сразу после закалки и после некоторого времени пребывания на складе.

Искусственное старение проводится путем нагрева изделий до температуры 200 градусов. Это активирует процесс диффузии, что способствует улучшенному растворению составных элементов. Выдержка составляет от нескольких часов до нескольких суток.

Следует отметить, что искусственно состаренные сплавы можно вернуть к изначальному состоянию. Для этого нужно нагреть изделие до 250 градусов с выдержкой до одной минуты. Выдержка должна проводится в селитряной ванне в строго определенное время, с точностью до нескольких секунд.

Причем подобный возврат можно выполнять несколько раз, без потери прочности материала, но с небольшим изменением свойств. Возврат состаренного металла обычно проводят с целью восстановления пластичности, необходимой для изменения формы изделия.

Любой из типов термообработки широко используется в промышленности. Благодаря чему у производителей есть возможность получения материалов, полностью соответствующих требованиям производства. Причем такая обработка сплавов позволяет значительно улучшить свойства алюминия и получить материал, не имеющий аналогов.

Главное условие при термообработке – соблюдение требований и рекомендаций к температурному режиму обработки и времени выдержки. Малейшие отклонения могут привести к необратимым изменениям свойств материала.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: stankiexpert.ru

Сплавы алюминия

Эти материалы могут подвергаться закалке – она увеличивает прочность и дает возможность в будущем упрочнять заготовку старением.

(Картинка 1)

Закалка приводит к образованию пересыщенного раствора легирующих веществ в матричном растворе основного металла с неравновесной структурой. Технология закалки заключается в следующем:

  • Алюминиевый сплав нагревается до температуры полного или частичного растворения в алюминии избыточных интерметаллидных фаз.
  • Выдерживается при этой температуре.
  • Быстро охлаждается до температуры 18-20 градусов.

Чем больше степень пересыщения легирующими элементами, тем выше показатель прочности сплава.

Посредством искусственного или естественного старения неустойчивое состояние переводится к устойчивому, а прочность возрастает при одновременном снижении уровня пластичности.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]