Читать реферат по всему другому: «Наплавка покрытий — сущность, специфика и современные методы» Страница 1

Рабочие поверхности деталей, используемых для комплектации разных видов оборудования, со временем изнашиваются. Это приводит к сокращению сроков эксплуатации агрегатов. Лазерная наплавка признана наиболее эффективной методикой восстановления работоспособности пострадавших от износа деталей. Разновидность сварочной технологии применяют также для защиты новых механизмов путем упрочнения поверхности изделия.

Современный вариант

На различных предприятиях используются производственные установки, укомплектованные металлическими деталями, которые в условиях значительных нагрузок изнашиваются, страдают от коррозии. Для увеличения сроков износостойкости и прочности механизмов их поверхность полностью или частично покрывают слоем расплавленного металла. Полученный таким способом наплыв прочно соединяется с материалом поверхности, образуя единый конгломерат.

Для восстановления работоспособности старой детали наплавляют аналогичный вид металла, что позволяет вернуть изделию форму и целостность. Если необходимо улучшить качество верхнего слоя, его покрывают другим материалом, наделяющим механизм новыми свойствами.

Принцип технологии

Лазерная наплавка (технология лазерного осаждения металлов) относится к наиболее эффективным методам восстановления покрытий, обладающих повышенной износостойкостью. В процессе участвуют лазерные системы современного типа, оснащенные мощными диодами и специализированными соплами. Что происходит:

  • На поверхности выбранного участка применением лазера создается подобие плавильной ванны. Емкость наполняется металлическим порошком, поступающим через отверстие сопла.
  • Во время обработки лазером происходит кратковременное расплавление материала основы. Все этапы осуществляются при автоматическом регулировании параметров зоны плавления.

Принцип лазерной наплавки тот же, что и при электродуговой и порошковой плазменной присадке, соединяющейся с металлом. Недостаток традиционных видов наплавки в подплавлении основы при значительном термическом воздействии на нее. Обработка порошкового материала локально направленным лучом мощного лазера исключает разогрев оплавляющейся поверхности при высокой скорости наплава.

Преимущества

  • Возможность задействовать разные порошки для создания многослойных структур собственных сплавов;
  • простоту замены расходных материалов, которая выполняется без остановки рабочего процесса;
  • способность к созданию трехмерных структур на неровных поверхностях с измененной геометрией;
  • контроль степени проплавления при высокопрочном сцеплении порошковой смеси с верхним слоем основы;
  • минимизацию влияния термической обработки на зону локального воздействия с исключением вероятности деформации;
  • высокую скорость создания грубых и очень тонких структур, что недоступно другим видам плавки;
  • возможность доступа к любым участкам крупногабаритных изделий при быстром нагреве и охлаждении рабочей зоны.

Лазерная наплавка поверхности металла не лишена некоторых недостатков, главный из которых – необходимость использования сложного и затратного оборудования. К недостаткам плавки также нужно отнести низкую производительность при невысоком КПД.

Преимущества


Технология наплавки лазером наделена рядом весомых преимуществ:

  • Предусмотрена возможность менять рабочие параметры. Позволяет корректировать физико-химические свойства наплавленного слоя в широком диапазоне.
  • Оказанием минимального температурного воздействия на деталь. Обеспечивается высокой точностью дозировкой импульса, незначительным временем и локальностью его подачи. После работ геометрическая форма обрабатываемой детали сохраняется.
  • Высокие адгезионные свойства. Исходный материал и наплавляемое покрытие соединяются очень прочно. Не уступает металлургической обработке.
  • Повышенная твердость, вязкость, коррозионная и тепловая стойкость наплавленного слоя. Поверхность получает стойкость к износу, растрескиванию, механическим повреждениям и другим дефектам.
  • Минимальные припуски. Существенно упрощает финишную механическую обработку.
  • Предусмотрена возможность работы с крупногабаритными деталями без их демонтажа, обработка внутренних и труднодоступных поверхностей. Обеспечивается волоконной технологией передачи лазерного излучения.
  • Высокая точность толщины наплавляемого слоя и его физико-химических показателей. Оператор и программное обеспечение контролирует рабочий процесс очень точно.
  • Невысокая себестоимость процесса и оперативность выполнения работ в сравнении с другими способами восстановления поверженных и изношенных металлических поверхностей. Технология не требует создания и поддержания высоких температур, длительной финишной обработки. При работах с хромированными изделиями, защитный слой удалять не надо.

Все эти преимущества существенно расширили сферу применения технологии лазерной наплавки, сделав ее востребованной в различных промышленных отраслях.

Особенности лазерного осаждения металлов

Благодаря точной направленности луча лазера, во время наплавки происходит формирование равномерно плотного конгломерата из порошка и материала основы. Толщина металлического разжижения колеблется в пределах 0,2-1 мм, удается создать несколько таких слоев, располагающихся один над другим.

Для нанесения линий, граней или контуров установка оборудована оптическим устройством с возможностью автоматического перемещения. Равномерность распределения слоев обеспечивается интеллектуальной системой сенсоров. Прогрессивную наплавочную технологию реализуют с использованием двух типов лазерного излучения – импульсного и непрерывного.

Наплавка импульсным лазером

Плавка по этой методике выполняется одновременным подводом луча лазерной установки и присадочного элемента к намеченному участку прямого осаждения. При расплавлении материал присадки (проволока, порошок) равномерно распространяется по месту повреждения.

После обработки импульсным лазером зону дефекта не придется подвергать длительной механической коррекции. Чтобы исключить окисление металла, ванну с расплавом защищают подачей смеси инертных газов (аргон и гелий).

Лазерное осаждение реализуют одним из двух методов, представленных в таблице ниже.

Тип импульсной наплавкиХарактеристика
Ручная методикаДля работ, выполняемых вручную оператором, присадкой служит проволока, диаметр которой в диапазоне 0,15-0,8 мм. Это может быть материал идентичный основе либо с повышенным свойством твердости. Работа ведется под контролем микроскопа с 10-16 кратным увеличением, диаметр лазерного луча (0,2-2,5 мм) должен в 2 раза превышать диаметр присадки, чтобы уменьшить объемы нагрева и расплава. Методом ручного осаждения металла устраняют небольшие сколы, поры и другие локальные дефекты поверхности. Конфигурация станков с лазерами позволяет обрабатывать мелкие детали, ремонтировать крупногабаритные механизмы
АвтоматизированнаяРоботизированную методику чаще применяют для защиты новых деталей от следов износа. Причина в низкой вероятности трещинообразования по наплавляемому слою. По ходу создания наплавки лазером подача присадки механизирована. В случае выбора металлического порошка, его доставку к месту расплава обеспечивает сопло. Автоматическую наплавку используют при необходимости наплавлять значительные объемы металла

Преимущество импульсного лазера в минимальных размерах области воздействия при высокой скорости процесса. Эти факторы снижают нагрев детали, препятствуют растеканию металла вокруг зоны наведения лазера, что важно для выполнения разных объемов наплавочных работ.

Непрерывная лазерная наплавка

Этот вид наплавочной технологии обеспечивает высокую производительность при минимальных тепловложениях лазерного луча по сравнению с другими видами плавки, а также сварки. Обработку непрерывным лазером применяют для трудно свариваемых материалов. Средний показатель в зоне перемешивания металлов основы и присадочного материала находится в пределах 10-30 мкм, с учетом режимов наплавления и варьирования толщины наплавки в диапазоне 0,3-3 мм за время одного прохода.

Устройство производственных систем для выполнения внутренних наплавочных манипуляций принципиально отличается от установок для осаждения металла на внешних поверхностях механизмов. Лазерные станки для внутренних работ оснащены призмами или зеркалами, предназначенными для переворачивания световых потоков.

Несомненно, лазерные методы наплавки материалов имеют перспективное будущее для машиностроительного производства. Однако для достижения технического и экономического эффекта полезно знать возможности и ограничения этих методов, а также области, в которых их применение является безальтернативным.

Лазерная наплавка известна с 80-х годов XX века. За это время не только усовершенствовались технологии и устройства для применения данного метода, но и появился ряд альтернативных технологий, которые находятся друг с другом в определенной конкуренции. Цель данной статьи подытожить развитие лазерной наплавки с точки зрения технической и экономической эффективности и обозначить перспективы ее дальнейшего внедрения в машиностроение. Основными преимуществами лазерной наплавки являются: • минимальное коробление и поводки (на порядок меньшие, чем при других видах наплавки) вследствие уменьшения термического влияния на основу; • возможность формирования сварочной ванны расплава сверху, что обеспечивает получение химического состава наплавляемого материала с минимальным проплавлением основы; • возможность формирования наплавочного состава в тонком поверхностном слое; • возможность наплавлять труднодоступные места деталей; • возможность получения металлокерамических поверхностных слоев с заданным комплексом свойств. Какие разновидности лазерной наплавки известны? Можно привести классификацию по применяемым присадочным материалам: • лазерная наплавка из проволоки; • шликерная наплавка — из пасты шликерного слоя; • лазерная наплавка из порошковой ленты; • газопорошковая наплавка — из подаваемого порошка в струе защитного газа; • проплавление порошка насыпным методом с помощью дозатора; • проплавление нанесенных методами напыления газотермических покрытий. Каковы основные направления внедрения лазерной наплавки сегодня? Прежде всего, продолжается активное внедрение лазерной наплавки на детали, требующие наплавленного слоя менее 1 мм. Получить такой слой другими методами практически невозможно. Альтернативой этому методу служит напыление и в некоторых случаях, где нет изгибных напряжений, активно используется в промышленности. Смысл лазерной наплавки проявляется на тех деталях, для которых адгезия напыляемых покрытий невелика по сравнению с действующими напряжениями, и, конечно, при наличии изгибных напряжений. Кроме того, пористость покрытия часто играет злую шутку с напыленными деталями. При действии среды идет быстрое коррозионное разрушение. Можно было бы отмахнуться от этого ряда деталей, но, как говориться, «мал золотник, да дорог». Особое место занимает лазерное проплавление покрытий, такие технологии занимают промежуточное положение по свойствам поверхностных слоев между технологиями напыления и лазерной наплавкой. Дело в том, что адгезия таких проплавленных покрытий многократно выше адгезии самих покрытий и этот вид обработки достаточно распространен, хотя говорить о наплавке в данном случае неверно — имеет место приварка самого покрытия к основе. Но качество приварки зависит от проработки технологии и является непростой технологической задачей. Еще одно направление — лазерная наплавка труднодоступных мест деталей, например, седла клапанов и других деталей арматуры, это перспективное направление. Кроме технического результата достигается экономия в уменьшении объемов наплавки, присадочных материалов и снижении расходов на механическую обработку деталей. Экономический эффект изготовления одной детали может превышать 3000 рублей. Следующее направление — применение газопорошковой лазерной наплавки. Формирование наплавленного валика идет сверху. При определенном подборе режимов обработки возможно получение валиков заданной формы и химического состава наплавляемого присадочного материала с малой степенью проплавления основы (рис. 1). Но в данном случае производительность лазерной наплавки будет приближаться к производительности плазменной наплавки, а стоимостные показатели будут не в пользу лазерного метода. Увы, плазма дешевле. Но в тех редких случаях, когда недопустимы поводки и надо исключить влияние неминуемого нагрева, лазер обладает неоспоримыми преимуществами. Поводки при лазерном методе можно существенно (на порядки) уменьшить.

Рис. 1. Микроструктура наплавленного валика при газопорошковой лазерной наплавке на бронзу БРАЖНМц 9-4-4-1

Особо актуальное направление — аддитивные компьютеризованнные методы послойного нанесения на базе газопорошковой лазерной наплавки (например, на поверхность лопаток) с получением необходимых свойств и химического состава и формы наплавленного валика. Такие лазерные установки появились в Москве и Санкт-Петербурге и других крупных центрах. Но себестоимость изготавливаемых деталей высока, а производительность невысокая. Метод применяется для изготовления изделий из цветных дорогостоящих сплавов, титановых и композитных деталей. Обычно установки продаются под конкретное производство и очень дорогие. Более дешевая альтернатива метода прототипирования — лазерная наплавка с получением в поверхностном слое заданного комплекса свойств материала. Этот метод основан на отличии лазерного излучения от других источников нагрева. Дело в том, что световая энергия быстрее нагревает поверхность неметаллических материалов по сравнению с металлическими. Например, керамическая частица имеет оплавленную поверхность уже через несколько микросекунд облучения. Варьируя фракцией присадочного материала, подавляя негативные моменты разложения неметаллических частиц, можно добиваться формирования в поверхностном слое заданных структур и даже наплавлять металлокерамические материалы с высокой долей керамической фазы. Возможно получение свойств в поверхностном слое материалов, которые невозможно получить в наплавленном валике обычными методами наплавки. Какие задачи можно решать такой технологией? Приведем некоторые результаты, полученные автором. Из рис. 2 видно, что структура металлокерамического материала, наплавленного по данной технологии, состоит из первичных и вторичных керамических частиц, полученных при взаимодействии с лазерным излучением. Частицы хорошо смочены. Дефектов нет. Наплавленный металлокерамический слой с долей керамической фазы более 65% обладает теплостойкостью до 1100°С, коррозионной стойкостью, абразивной стойкостью в 3 раза более высокой, чем подверженная улучшению сталь.

Рис. 2. Электронная микроскопия наплавленного металлокерамического поверхностного слоя

Рис. 3. Изменение химического состава по сечению зоны обработки на границе фаз металл – керамика

Рассмотрим изменение химического состава такого валика (рис. 3). Из рисунка видно наличие достаточно глубокой зоны перехода в частице и в теле матрицы, что свидетельствует о разложении частицы и обогащении ванны расплава элементами керамической частицы. Аналогичное распределение химических элементов со значительным усвоением продуктов распада керамической частицы идет и в другом случае (рис. 5). Сравнительные характеристики износа наплавленных металлокерамических материалов представлены на рис. 4. Видно, что создание слоев с заданной структурой позволяет получить износостойкие материалы на поверхности трудноупрочняемых материалов. По сути, любой материал может стать износостойким благодаря такой наплавке.

Рис. 4. Износ исследуемых материалов с лазерной наплавкой поверхности и без упрочнения

Рис. 5. Распределение элементов вблизи границы сплавления керамики и металла

Распределение химических элементов на границе керамическая частица — матрица представлено на рис. 5. Данные рис. 5 подтверждают получение материалов с высокими фрикционными свойствами. Фрикционные свойства с плавным регулированием коэффициента трения могут быть легко получены на поверхности целого ряда материалов. При правильном использовании технологии и присадочных материалов возможно получение дешевых видов наплавки для решения разнообразных задач машиностроения. Механические свойства металлокерамических слоев приведены в табл. 1. С помощью данной технологии возможно получение уникальных самосмазывающих слоев для деталей машиностроения на основе графита и дисульфида молибдена (рис. 7). Антифрикционнные свойства этого материала близки к свойствам покрытий из дисульфида молибдена. Промышленные испытания переходников с металлокерамическими наплавками, выполненные с помощью лазерного луча, показали, что их ресурс увеличился в 4–5 раз. Испытания проведены при бурении горных пород на руднике «Каула-Котсельваара» [1].

Рис 6. Изменение коэффициента трения в зависимости от содержания окиси алюминия для композиции Бр-Графит-Аl2O3


Рис. 7. Микроструктура самосмазывающего наплавочного материала на основе дисульфида молибдена
Таблица 1. Механические свойства наплавленных металлокерамических слоев

ВариантыПредел текучести, МПа Временное сопротивление, МПаОстаточные напряжения, МПа
Cr3C2-Ni80Cr201200+501570+50–480+50
MoS2-Mo-Cr750+501180+50+325+50

Еще один пример применения металлокерамической наплавки. Детали лебедочных механизмов подвергаются интенсивному износу, что приводит к частому выходу из строя сухарей, из-за чего на судах необходимо иметь значительный запас этих деталей. Нагрузка на трущуюся пару составляет 6–8 МПа. Детали работают в среде морского тумана в условиях ограниченной смазки. На стенде сравнительным испытаниям подвергались сухари из бронзы БрОФ10-2 с необработанным и металлокерамическим поверхностными слоями в паре с винтом из стали марки 14Х17Н2. Установлено, что при длительности испытания 22 часа износ неупрочненной бронзы составил 100 мкм, а металлокерамический слой не показал видимого износа за 35 часов. И только за 114 часов износ последнего составил 100 мкм. Таким образом, работоспособность сухарей с металлокерамическим слоем увеличилась в 4,5 раза. На основе этой технологии можно вводить и некоторые сверхтвердые материалы. С ее помощью можно решать любые задачи износостойкости, абразивостойкости, теплостойкости, фрикционнные и антифрикционнные задачи, применяя при этом дешевые материалы. По мнению авторов, такие лазерные наплавки, несомненно, получат широкое применение в машиностроении. Поскольку сейчас мы находимся в той ситуации, когда внедрение таких технологий только начинается, важно знать возможности различных методов лазерной наплавки, а эффективность ее подтверждается практикой и большой материаловедческой и технологической работой. В. О. Попов, «Лазертерм» В. А. Красавчиков, С. Н. Смирнов СП «Лазертех» Литература 1. Скрипченко А.И., Попов В. О., Кондратьев С. Ю. Возможности лазерного поверхностного модифицирования деталей машиностроения // РИТМ. — 2010. — № 6. — С. 23–29.

Виды работ по созданию покрытий

Технологию лазерной наплавки реализуют путем нанесения на поверхность изношенного механизма слоя металла, в результате чего присадка сваривается с основой. С учетом минимального подплавления основы, можно утверждать, что свойства наплавки зависят от материала, используемого в качестве присадки. На современном производстве подачу затратного материала выполняют одним из трех основных способов.

Оплавление лазерным лучом

Поверхность детали предварительно покрывают порошковой пастой, подбирая состав обмазки, удовлетворяющий определенным требованиям. Оплавление лучом лазера реализуют последовательно, чтобы охватить всю намеченную зону. Если нужно создать многослойное покрытие, после каждого сканирования лазером наносят следующий слой пасты, для каждого слоя отдельный пласт обмазки.

Преимущества – простая по технологии выполнения наплавка не утяжеляет конструкцию агрегата. К недостаткам относят трудоемкий процесс осаждения, неравномерность наплавленной поверхности по причине натяжения поверхностной пленки расплавившегося металла.

Боковая подача газопорошкового микса

Лазерной наплавкой этого типа до недавнего времени пользовались наиболее часто. Подача порошка внутрь плавильной ванны осуществляется методом впрыскивания сбоку от лазерного луча либо навстречу ему. Во время наплавления формируются валики с различным типом геометрии.

Преимущества – благодаря газопорошковой технологии создается более качественный плакирующий слой. Наплыв характеризуется равномерной толщиной и химическим составом, открывается возможность использования композитных материалов при сохранении фазы упрочнения. Недостаток методики обусловлен несимметричной доставкой порошка по отношению к линии движения лазерного луча. Даже при его сканировании в плоской проекции.

Коаксиальный способ наплавления

Подача обогащенного газом порошка осуществляется через сопло непосредственно в зону работы лазера сплошным потоком конусообразной формы. Методика признана самым универсальным способом формирования покрытий однородного либо композитного типа для плоских, а также трехмерных деталей.

Преимущества – гарантирование симметричности по отношению к направлению плавки, равномерное сцепления валиков сваркой. Наплавку лазерного типа характеризует высокая производительность использования присадки для сложно обрабатываемых поверхностей. Характерная особенность, а также недостаток создания наплава, в сложности обеспечения подачи с равномерной симметрией.

Основной параметр качества лазерного напыления напрямую связан с расходом порошка. Для регулирования толщины осаждаемого пласта металла, его разжижения и твердости необходимо подобрать соответствующий диаметр лучевого потока в сочетании с мощностью установки, а также скоростью процесса.

Сфера применения наплавки лазером


Наплавлением с помощью лазерной сварки удается устранить повреждения, вызванные сколами, смятием, износом, изломом:

  • кромок литейных пресс-форм, в том числе и тех, которые используются для работ с резиной, пластиком;
  • подшипников на валах, шестеренок, зубьев в шлицевых креплениях;
  • элементов гидросистем: клапанов линий всасывания и нагнетания, золотников в гидравлических распределителях;
  • в торцевой части, в области основания и ребра пера газотурбинных моторов;
  • роторов турбинных компрессоров;
  • изделий их сплавов повышенной прочности, эксплуатирующихся в условиях ударных и ударно-абразивных нагрузок: гидробуры, вибропогружатели, штампы вырубки и пр.;
  • крупногабаритных металлических изделий весом в десятки тонн.

Это далеко не все случаи, где технология лазерной наплавки будет оптимальным решением для восстановления металлических изделий. Ей найдется достойное применение и в небольших мастерских, и на крупных предприятиях.

предлагает специализированные системы для лазерной наплавки с надежными гарантиями и доставкой по России. Консультанты при необходимости придут на помощь и помогут подобрать оборудование под особенности предстоящих работ. Для связи с ними воспользуйтесь формой обратной связи или позвоните нам.

Где применяют

Методику осаждения жидкого металла широко использует современная промышленность для восстановления участков деталей, пострадавших от повреждений. Лазерная наплавка применяется не только для ремонта и упрочнения покрытий, но и для создания комплектов новых деталей.

  1. EHLA. Технология предназначена для высокоскоростного создания покрытий со снижением тепловых затрат.
  2. SLM. Высокоточная методика выборочного спекания порошков для задания контуров послойного наплыва.
  3. LMD. Способ прямого выращивания деталей путем коаксиального наплавления, точность требует особых ресурсов.

В металлургии, судостроении и нефтегазовой отрасли лазерную наплавку чаще всего выбирают для усиления отдельных участков заготовок либо коррекции их геометрических параметров. Возможность экспериментировать с вариантами наплавления металла открывает перспективы для создания деталей различных форм. Лазерная наплавка позволяет быстро восстановить работоспособность дорогих механизмов, сэкономив деньги и время.

Используемая литература и источники:

  • Статья в Википедии
  • Справочник по магнитно-импульсной обработке металлов. / Б. Н. Бадьянов. — Ульяновск: изд-во Ульяновский ГТУ, 2000 г.
  • Соснин Н. А., Ермаков С. А., Тополянский П. А. Плазменные технологии. Руководство для инженеров.. — Санкт-Петербург: Изд-во Политехнического ун-та, 2013.

Плакирование

Плакированные материалы представляют собой двухслойные или многослойные комбинации металл – металл, получаемые различными способами плакирования. Плакированные слои металла обычно гораздо толще слоев, полученных другими способами обработки поверхности.

Промышленность выпускает плакированные листы, полосы, трубы и сортовые профили. Плакированием обеспечивается такое сочетание свойств отдельных слоев, что эффективность использования плакированных материалов выше, чем каждого из компонентов их составляющих.

Используют различные комбинации металлов и сплавов при плакировании:

  • алюминий и углеродистая сталь;
  • алюминий и коррозионностойкая сталь,
  • алюминий и титан;
  • бронза и сталь;
  • хромоникелевая сталь и углеродистая сталь;
  • молибден и коррозионностойкая сталь;
  • латунь и углеродистая сталь;
  • ниобий и углеродистая сталь;
  • никель и медь;
  • титан и углеродистая сталь и др.

В зависимости от назначения требуются следующие показатели плакированных материалов: прочность, пластичность, коррозионная стойкость, износостойкость, теплопроводность и др.

Плакированные материалы являются не только заменителями однородных (сплошных дорогостоящих материалов). Во многих случаях, благодаря сочетанию свойств своих компонентов, они имеют более благоприятные показатели, чем однородные дорогостоящие материалы сами по себе.

Большинство способов получения плакированных материалов сводится к двум рабочим этапам: получение исходного биметаллического изделия (заготовки) и обработка давлением биметаллической заготовки с получением готового плакированного биметалла. Исключениями являются накатка полосы или порошка на полосу и отчасти плакирование взрывом.

Среди способов получения плакированных металлов распространены следующие:

  • комбинированное литье, когда в изложницу для слитков закладывают перфорированные разделительные листы, отмечающие положение будущей плоскости соединения между различными сталями, затем их заливают одновременно из двух ковшей через две воронки, контролируя равенство высот зеркала жидкого металла в обеих частях изложницы. Затем биметаллический слиток прокатывают на плакированные листы или фасонные профили;
  • комбинацией твердого металла с жидким, при котором твердые металлические плиты из сплава определенного химического состава закладывают в соответствующую изложницу и закрепляют, а затем заливают вокруг нее жидкий металл. Соединение (схватывание слоев) обычно обеспечивается только во время прокатки биметаллического слитка;
  • способ пакетной прокатки, при котором плакированные листы получают путем прокатки собранных и сваренных многослойных пакетов. В зависимости от назначения расположение и количество слоев может быть различным (двух-, трехи четырехслойные пакеты). Листы могут быть с однои двухсторонним плакированием. Этот способ получил наибольшее распространение. Его сущность заключается в том, что основной и плакирующий металл собираются вместе в пакет, который обваривают герметичными швами. Затем пакет перед прокаткой нагревают до температур, при которых происходит растворение и восстановление окислов на всех поверхностях герметичного объема. Последующая прокатка с величиной обжатия не менее 60 % приводит к сварке основного металла с плакирующим слоем;
  • способ холодной прокатки используют при получении двухили трехслойных плакированных полос холодной прокаткой, например Al + Fe + Al или Cu + Fe + Cu (рис. 1, а);
  • плакирование взрывом (рис. 1, б) применяется преимущественно для таких пар материалов, соединить которые другими способами плакирования трудно или же для изготовления изделий специального назначения. Соединение (схватывание) в этом случае возможно и между такими металлами, которые не растворяются один в одном, образуют интерметаллические соединения при повышенных температурах или резко различаются по сопротивлению деформации.

Рис. 1. Методы плакирования металлов: а – холодная прокатка; б – плакирование взрывом

Для этого способа характерно применение основного металла и плакирующего материала (покрытия) в холодном состоянии.

Сущность плакирования взрывом заключается в том, что на поверхность плакирующего листа помещают взрывчатое вещество с детонатором. Как правило, плакирующий лист располагают под углом к основе. При взрыве, во время соударения пластин возникает струя металла, выходящая с поверхностных слоев основного и плакирующего материала. Вместе с ней удаляется и загрязнение, что способствует образованию чистых поверхностей при соединении материалов. Процессы деформации во время соударения протекают при давлениях до 15 МПа, соответствующих движению фронтов ударных волн.

Плакирование также производят накаткой порошка на полосу и путем прокатки порошковой ленты.

Перечисленные способы плакирования предусматривают получение плакирующих слоев от нескольких до 20 мм.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]