Проекции геометрических тел с примерами и образцами выполнения


Формы геометрических тел

Деталь любой формы можно представить как совокупность отдельных геометрических тел.

Для примера возьмем деталь (рис. 159. а) и проанализируем се форму. Мысленно разделив ее на отдельные элементы, получим следующие гео­метрические тела (рис. 159, б): 1 — усеченный прямой круговой конус с цилиндрическим отвер­стием, 2 — прямой круговой цилиндр, 3 — прямо­угольный параллелепипед, 4 — два прямоугольных параллелепипеда с цилиндрическими отверстия­ми, 5 — два полых полуцилиндра. Для выполне­ния комплексных чертежей необходимо усвоить методы проецирования отдельных геометрических тел, а также точек и линий, расположенных на поверхности этих тел.

Рис. 159

Геометрические тела, ограниченные плоскими многоугольниками, называются многогранниками (рис. 160, а). Эти многоугольники называются гранями, их пересечения — ребрами. Угол, образо­ванный гранями, сходящимися в одной точке — вершине, называется многогранным углом.

Тела вращения ограничены поверхностями, которые получаются в результате вращения ка­кой-либо линии вокруг неподвижной оси (рис. 160, б и в). Линия АВ, которая при своем движении образует поверхность, называется обра­зующей. Наиболее часто встречаются такие тела вращения, как цилиндр, конус, шар, тор.

Рис. 160

Круглый конус в геометрии

Приведем геометрическое определение этой фигуры. Круглым конусом называется поверхность, которая образована прямыми отрезками, соединяющими все точки некоторой окружности с одной-единственной точкой пространства. Эта единственная точка не должна принадлежать плоскости, в которой лежит окружность. Если вместо окружности взять круг, то указанный способ также приводит к получению конуса.

Вам будет интересно:Юридический колледж в Иваново: специальности, приемная комиссия, отзывы

Круг называется основанием фигуры, его окружность — это директриса. Отрезки, соединяющие точку с директрисой, называются генератрисами или образующими, а точка, где они пересекаются — это вершина конуса.

Круглый конус может быть прямым и наклонным. Обе фигуры показаны ниже на рисунке.

Вам будет интересно:Термофильные бактерии: польза и вред для человека

Разница между ними заключается в следующем: если перпендикуляр из вершины конуса падает точно в центр окружности, то конус будет прямым. Для него перпендикуляр, который называется высотой фигуры, является частью его оси. В случае конуса наклонного высота и ось образуют некоторый острый угол.

Ввиду простоты и симметричности фигуры далее будем рассматривать свойства только прямого конуса с круглым основанием.

Проекции призм

Построение проекций правильной прямой шес­тиугольной призмы (рис. 161) начинается с выпо­лнения ее горизонтальной проекции — правильно­го шестиугольника. Из вершин этого шестиуголь­ника провопят вертикальные линии связи и строят фронтальную проекцию нижнего основания при­змы. Эта проекция изображается отрезком гори­зонтальной прямой. От этой прямой вверх откла­дывают высоту призмы и строят фронтальную проекцию верхнего основания. Затем вычерчива­ют фронтальные проекции ребер — отрезки верти­кальных прямых, равные высоте призмы. Фрон­тальные проекции передних и задних ребер совпа­дают. Горизонтальные проекции боковых граней изображаются в виде отрезков прямых. Передняя боковая грань 1243 изображается на плоскости V без искажения, а на плоскости W— в виде прямой линии. Фронтальные и профильные проекции остальных боковых граней изображаются с иска­жением.

На чертеже оси х, у и z не показывают, что делает чертеж более простым.

Рис. 161

Несколько сложнее построение проекций на­клонной призмы.

Рассмотрим порядок построения проекций на­клонной шестиугольной призмы.

1. Призма, основание которой лежит на плос­кости Н, наклонена к этой плоскости под утлом α (рис. 162, а). Ребра призмы параллельны плоскос­ти V, т.е. являются фронталями.

Вначале выполняется построение горизонталь­ной проекции основания призмы, которое проеци­руется на плоскость Н без искажения (правиль­ный шестиугольник). Фронтальная проекция осно­вания представляет собой отрезок прямой, парал­лельной оси х.

Из точек 1′, 2′, 3′ фронтальной проекции основания проводят прямые проекции ребер под углом α к оси х и на них откладывают действи­тельную длину бокового ребра призмы.

Строят фронтальную проекцию верхнего осно­вания призмы в виде отрезка прямой, равного и параллельного фронтальной проекции нижнего основания.

Из точек 1, 2, 3, 4. 5. 6 горизонтальной проек­ции нижнего основания проводят прямые — про­екции ребер — параллельно оси х и на них с по­мощью вертикальных линий связи находят шесть точек — горизонтальные проекции вершин верхне­го основания призмы.

2. Прямая правильная шестиугольная призма наклонена под углом α к плоскости Н. Основание призмы наклонено к плоскости Н под углом β (рис. 162, б).

В этом случае необходимо вначале построить фронтальную проекцию основания. Эта проекция представляет собой отрезок, равный расстоянию между параллельными сторонами шестиугольника. Если этот отрезок разделить пополам и из его середины провести линию связи, то на ней будут расположены точки 2 и 5 — горизонтальные про­екции вершин основания призмы. Расстояние между точками 2, 5 равно действительному рас­стоянию между вершинами основания призмы. Так как горизонтальные проекции сторон 16 и 34 представляют собой их действительные длины, то, воспользовавшись этим обстоятельством, мож­но построить полностью горизонтальную проек­цию основания.

Дальнейший процесс построения, показанный на рис. 162, б, аналогичен приведенному на рис. 162, а.

Рис. 162

На комплексных чертежах предметов часто приходится строить проекции линий и точек, расположенных на поверхности этих тел, имея только одну проекцию линии или точки. Рассмотрим решение такой задачи.

Дан комплексный чертеж четырехугольной пря­мой призмы и фронтальная проекция а’ точки А.

Прежде всего надо отыскать на комплексном чертеже две проекции грани, на которой располо­жена точка А. На комплексном чертеже видно (рис. 163, а), что точка А лежит на грани призмы 1265. Фронтальная проекция а’ точки А лежит на фронтальной проекции 1’2’6’5‘ грани призмы. Горизонтальная проекция 1562 этой грани — отре­зок 56. На этом отрезке и находится горизонталь­ная проекция а точки А. Профильную проекцию призмы и точки А строят, применяя линии связи.

По имеющемуся комплексному чертежу призмы можно выполнить ее изометрическую проекцию по координатам вершин. Для этого вначале строят нижнее основание призмы (рис. 163, б), а затем вертикальные ребра и верхнее основание (рис. 163, в).

По координатам т и п точки А, взятым с ком­плексного чертежа, можно построить аксономет­рическую проекцию этой точки.

Рис. 163

Учимся рисовать правильные пропорциональные конусы

Конус лежит в основе многих предметов: елей, многих духовых инструментов, рупоров, абажуров ламп и так далее. Поэтому так важно освоить эту фигуру на начальных этапах курсов по рисунку. Кроме того, геометрические фигуры помогают начинающему художнику понять законы перспективы и научиться показывать объем на рисунке.

Рисование геометрических фигур – одна из составляющих программы всех художественных школ. Без умения изображать их не может обойтись ни один художник, независимо от того, в каком стиле он собирается работать в дальнейшем. Обычно курс начинается именно с них, а уже потом ученики переходят к более сложным материалам – к рисунку розеток, капителей, лиц и фигур людей. Каждый художник также должен легко накладывать штриховку при помощи карандаша и создавать объем.

Если вы собираетесь поступать в художественный вуз, вам предстоит сдавать творческий экзамен. Изображение геометрического тела – это одно из его заданий. Несмотря на видимую простоту рисования конуса, изобразить его с первой попытки без ошибок получается далеко не у всех. Поэтому будет лучше, если перед вступительными испытаниями вы достаточно потренируетесь. Для успешной сдачи абитуриентам нужно изобразить не одно тело вращения и отточить свое мастерство, чтобы на самом испытании чувствовать себя уверенно и свободно.

Школа-студия «Мастер рисунка» К. Э. Арутюновой уже не первый год готовит абитуриентов к поступлению в главные художественные вузы Москвы. Рисованию геометрических фигур, тел вращения отводится на курсах достаточно времени. К каждому ученику здесь применяется индивидуальный подход с учетом его уровня подготовки и количества времени до экзамена. Преподаватель отмечает все ошибки учащегося и доступно объясняет их, дает советы по исправлению. Запишитесь на курсы по телефону или через форму на сайте.

Проекции пирамид

Построение проекций треугольной пирамиды начинается с построения основания, горизонталь­ная проекция которого представляет собой тре­угольник без искажения (рис. 164, а). фронталь­ная проекция основания — отрезок горизонталь­ной прямой.

Из горизонтальной проекции точки s (верши­ны. пирамиды) проводят вертикальную линию связи, на которой от оси х откладывают высоту пирамиды и получают фронтальную проекцию s’ вершины. Соединяя точку s’ с точками 1′, 2′ и 3′, получают фронтальные проекции ребер пира­миды.

Горизонтальные проекции ребер получают, соединяя горизонтальную проекцию точки s с горизонтальными проекциями точек 1, 2 и 3.

Пусть, например, дана фронтальная проекция а’ точки А, расположенной на грани пирамиды 1s2, и требуется найти другую проекцию этой точки. Для решения этой задачи проведем через а’ произвольную вспомогательную прямую и продолжим ее до пересечения с фронтальными проекциями 1’s’ и 2’s’ ребер в точках п’ и т‘. Затем проведем из точек п’ и т‘ линии связи до пересечения с горизонтальными проекциями 1s и 2s этих ребер в точках п и т. Соединив п с т, получим горизонтальную проекцию вспомогательной прямой, на которой с помощью линии связи найдем искомую горизонтальную проекцию а точки А Профильную проекцию этой точки нахо­дят по линиям связи.

Другой способ решения задачи на построение проекции точки по заданной ее проекции показан на рис. 164, б. Дана четырехугольная правильная пирамида. Через заданную фронтальную проек­цию а’ точки А проводят вспомогательную пря­мую, проходящую через вершину пирамиды и расположенную на ее грани. Горизонтальную проекцию ns вспомогательной прямой находят с помощью линии связи. Искомая горизонтальная проекция а точки А находится на пересечении линии связи, проведенной из точки а’, с горизон­тальной проекцией ns вспомогательной прямой.

Фронтальная диметрическая проекция рассмат­риваемой пирамиды выполняется следующим образом (рис. 164, в).

Вначале строят основание, для чего по оси х откладывают длину диагонали 13, а по оси у — половину длины диагонали 24. Из точки О пере­сечения диагоналей проводят ось z и на ней от­кладывают высоту пирамиды. Вершину S соединя­ют с вершинами основания прямыми линиями — ребрами.

Фронтальную диметрическую проекцию точки А, расположенной на грани пирамиды, строят по координатам, которые берут с комплексного чер­тежа. От качала координат О по оси х отклады­вают координату xА, из се конца параллельно оси у — половину координаты yА и из конца этой ко­ординаты параллельно оси z — третью координату zА. Построение точки В, расположенной на ребре пирамиды, более простое. От точки О по оси х от­кладывают координату xB и из конца ее проводят прямую, параллельную оси z, до пересечения с ребром пирамиды в точке В.

Рис. 164

Проекции цилиндров

Боковая поверхность прямого кругового цилин­дра получается вращением отрезка АВ образую­щей вокруг оси, параллельной этому отрезку. На рис. 165, а представлена изометрическая проекция цилиндра.

Построение горизонтальной и фронтальной проекций цилиндра показано на рис. 165, б и в.

Построение начинают с изображения основания цилиндра, т.е. двух проекций окружности (рис. 165, б). Так как окружность расположена на плоскости Н, то она проецируется на эту плос­кость без искажения. Фронтальная проекция ок­ружности представляет собой отрезок горизон­тальной прямой линии, равный диаметру окруж­ности основания.

После построения основания на фронтальной проекции проводят две очерковые (крайние) обра­зующие и на них откладывают высоту цилиндра. Проводят отрезок горизонтальной прямой, кото­рый является фронтальной проекцией верхнего основания цилиндра (рис. 165, в).

Рис. 165

Определение недостающих проекции точек А и В, расположенных на поверхности цилиндра, по заданным фронтальным проекциям в данном слу­чае затруднений нс вызывает, так как вся горизонтальная проекция боковой поверхности цилиндра представляет собой окружность (рис. 166. а). Следовательно, горизонтальные проекции точек А и В можно найти, проводя из данных точек а’ и b’ вертикальные линии связи до их пересечения с окружностью в искомых точ­ках а и Ь.

Профильные проекции точек А и В строят так­же с помощью вертикальных и горизонтальных линий связи.

Изометрическую проекцию цилиндра вычерчи­вают, как показано на рис. 166, б.

В изометрии точки A и В строят по координа­там. Например, для построения точки В от начала координат О по оси х откладывают координату xB = n, а затем через ее конец проводят прямую, параллельную оси у, до пересечения с контуром основания в точке 1. Из этой точки параллельно оси x проводят прямую, на которой откладывают координату xB = h1 точки В.

Рис. 166

Получение фигуры с помощью вращения

Перед тем как перейти к рассмотрению развертки поверхности конуса, полезно узнать, как с помощью вращения можно получить эту пространственную фигуру.

Предположим, что у нас имеется прямоугольный треугольник со сторонами a, b, c. Первые две из них являются катетами, c — это гипотенуза. Поставим треугольник на катет a и начнем его вращать вокруг катета b. Гипотенуза c при этом опишет коническую поверхность. Эта простая методика получения конуса изображена ниже на схеме.

Очевидно, что катет a будет радиусом основания фигуры, катет b — его высотой, а гипотенуза c соответствует образующей круглого прямого конуса.

Проекции конусов

Нагляднее изображение прямого кругового ко­нуса показано на рис. 167, а. Боковая поверхность конуса получена вращением отрезка BS вокруг оси, пересекающей отрезок в точке S. Последова­тельность построения двух проекций конуса пока­зана на рис. 167, б и в. Сначала строят две проекции основания. Горизонтальная проекция основа­ния — окружность. Фронтальной проекцией будет отрезок горизонтальной прямой, равный диаметру этой окружности (рис. 167, б). На фронтальной проекции из середины основания восставляют перпендикуляр и на нем откладывают высоту конуса (рис. 167, в). Полученную фронтальную проекцию вершины конуса соединяют прямыми с концами фронтальной проекции основания и по­лучают фронтальную проекцию конуса.

Рис. 167

Если на поверхности конуса задана одна проек­ция точки А (например, фронтальная проекция на рис. 168, а). то две другие проекции этой точки определяют с помощью вспомогательных линий — образующей, расположенной на поверхности ко­нуса и проведенной через точку А, или окружнос­ти, расположенной в плоскости, параллельной основанию конуса.

В первом случае (рис 168. а) проводят фрон­тальную проекцию s’a’f ’ вспомогательной обра­зующей. Пользуясь вертикальной линией связи, проведенной из точки f, расположенной на фрон­тальной проекции окружности основания, находят горизонтальную проекцию sf этой образующей, на которой с помощью линии связи, проходящей через а’, находят искомую точку а.

Во втором случае (рис. 168. б) вспомогательной линией, проходящей через точку А, будет окруж­ность. расположенная на конической поверхности и параллельная плоскости Н. Фронтальная проек­ция этой окружности изображается в виде отрезка Ь’с’ горизонтальной прямой, величина которого равна диаметру вспомогательной окружности. Искомая горизонтальная проекция а точки А на­ходится на пересечении линии связи, опущенной из точки а’, с горизонтальной проекцией вспомо­гательной окружности.

Если заданная фронтальная проекция Ь’ точки В расположена на контурной (очерко­вой) образующей SK, то горизонтальная проекция точки находится без вспомогательных линий (рис. 168. б).

В изометрической проекции точку А, находя­щуюся на поверхности конуса, строят по трем координатам (рис. 168, в): xА = n, yА = m, zА = h. Эти координаты последовательно откладывают по направлениям, параллельным изометрическим осям. В рассматриваемом примере от точки О по оси х отложена координата xА = n; из конца ее параллельно оси у проведена прямая, на которой отложена координата yА = m; из конца отрезка, равного т, параллельно оси z проведена прямая, на которой отложена координата zА = h. В резуль­тате построений получим искомую точку А.

Рис. 168

Правильное изображение конуса карандашом — объем

Для того, чтобы придать нашему конусу объем, нам стоит добавить свет и тень. Обозначаем границу света и тени, найти самый светлый участок. В конусе присутствуют следующие теневые участки:

  • полутон;
  • свет;
  • блик;
  • свет;
  • полутон;
  • тень;
  • блик.

Именно это распределение света и тени смогут сделать конус объемным. Центр блика зависит от того, откуда идет освещение.

Штрихи идут по форме, при этом четких границ между светом и тенью отсутствует.

На занятиях наши педагоги рассказывают, каким образом правильно создавать рисунок конуса, проводят лекционные и практические группы.

Did you find apk for android? You can find new Free Android Games and apps.

Проекции шара

На рис. 169, а изображена половина шара, сферическая поверхность этого шара образована вращением четверти окружности АВ вокруг ради­уса АО.

Проекции этой фигуры приведены на рис. 169, б. Горизонтальная проекция — окруж­ность радиуса, равного радиусу сферы, а фрон­тальная — полуокружность того же радиуса.

Если точка А расположена на сферической поверхности (рис. 169, в), то вспомогательная линия Ь’с’, проведенная через эту точку параллельно горизонтальной плоскости проекций, прое­цируется на горизонтальную плоскость проекций окружностью. На горизонтальной проекции вспо­могательной окружности находят с помощью ли­нии связи искомую горизонтальную проекцию а точки А.

Величина диаметра вспомогательной окружнос­ти равна фронтальной проекции Ь’с’.

Рис. 169

Проекции кольца и тора

Поверхность кругового кольца (рис. 170, а) образована вращением образующей окружности ABCD вокруг оси ОО1.

Тор — поверхность, образованная вращением части дуги окружности, являющейся образующей, вокруг оси ОО1, расположенной в плоскости этой окружности и не проходящей через ее центр.

Рис. 170

На рис. 171, а и б приведены два вида тора. В первом случае образующая дуга окружности радиуса R отстоит от оси вращения на расстоянии меньше радиуса R, а во втором случае — больше.

В обоих случаях фронтальные проекции тора представляют собой действительный вид двух образующих дуг окружности радиуса R, располо­женных симметрично относительно фронтальной проекции оси вращения. Профильными проекция­ми тора будут окружности.

Круговое кольцо (или открытый тор) имеет горизонтальную проекцию в виде двух концентри­ческих окружностей, разность радиусов которых равна толщине кольца или диаметру образующей окружности (рис. 170, б). Фронтальная проекция ограничивается справа и слева дугами полуокруж­ностей диаметра образующей окружности.

Рис. 171

В случае, когда точка А лежит на поверхности кругового кольца и дана одна се проекция, для нахождения второй проекции этой точки приме­няется вспомогательная окружность, проходящая через данную точку А и расположенная на повер­хности кольца в плоскости, перпендикулярной оси кольца (рис. 172).

Если задана фронтальная проекция а’ точки А, лежащей на поверхности кольца, то для нахожде­ния ее второй проекции (в данном случае — про­фильной) через а’ проводят фронтальную проек­цию вспомогательной окружности — отрезок вер­тикальной прямой линии b’c’. Затем строят про­фильную проекцию b»с» этой окружности и на ней, применяя линию связи, находят точку а“.

Если задана профильная проекция а» точки D, расположенной на поверхности этого кольца, то для нахождения фронтальной проекции точки D через d» проводят профильную проекцию вспомо­гательной окружности радиуса O»d“. Затем через верхнюю и нижнюю точки е» f» этой окружности проводят горизонтальные линии связи до пересечения с фронтальными проекциями образующей окружности радиуса r и получают точки e’ и f’. Эти точки соединяют вертикальной прямой, кото­рая представляет собой фронтальную проекцию вспомогательной окружности (она будет невиди­ма). Проводя горизонтальную линию связи из точки d» до пересечения с прямой e’f ‘, получаем искомую точку d’.

Такие же приемы построения применимы и для точек, находящихся на поверхности тора.

Рис. 172

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: santehekonomservis@cp9.ru