Какой метод получения меди – 2 Какой метод получения меди — с помощью серной кислоты или бактериальный — экологически… решение задачи


Мировое производство первичной и вторичной рафинированной меди в настоящее время составляет около 15-16 миллионов тонн в год . Половина всей производимой меди используется в электротехнической промышленности. Основное количество меди получают из первичного сырья, но весьма значительна доля меди, производимой и из вторичного сырья. Так, преимущественно из первичного сырья производят лист М1 и электротехнические медные ленты, прутки медные, проволоку; из вторичного — трубку медную М2, опять же проволоку, кровельную медь.

Где добывается медная руда?

Основные месторождения медных руд в России сосредоточены на Урале, в восточной Сибири и на Северном Кавказе. К списку основных уральских месторождений, находящихся в Свердловской области, относятся – Кировоградское, Ревдинское, Дегтярское и Красноуральское.

Интересные материалы:

Зачем была создана Вчк? Зачем красиво сервировать стол? Зачем Лыжные носки? Зачем Наковаленка на Секаторе? Зачем накрывают чеснок на зиму? Зачем нужен блок лаунчер? Зачем нужен friGate? Зачем нужен каратэ? Зачем нужна биология в современном мире? Зачем нужны медузы в природе?

СПОСОБЫ ПРОИЗВОДСТВА МЕДИ

Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический. Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличии от пирометаллургического не позволяет извлечь попутно с медью драгоценные металлы. Второй способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению.

ПИРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ПРОИЗВОДСТВА МЕДИ

Основу пирометаллургического процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений. Жидкий штейн продувают в конвертерах воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди. Черновую медь далее подвергают рафинированию – очистке от примесей.

Обогащение медной руды

Большинство медных руд обогащают способом флотации. В результате получают медный концентрат, содержащий 8-35% Cu, 40-50% S, 30-35% Fe и пустую породу, главным образом составляющими которой являются SiO2, Al2O3 и CaO. Концентраты обычно обжигают в окислительной среде с тем, чтобы удалить около 50% серы и получить обожженный концентрат с содержанием серы, необходимым для получения при плавке достаточно богатого штейна. Обжиг обеспечивает хорошее смешение всех компонентов шихты и нагрев ее до 550-600 ºС и, в конечном итоге, снижение расхода топлива в отражательной печи в два раза. Однако при переплавке обожженной шихты несколько возрастают потери меди в шлаке и унос пыли. Поэтому обычно богатые медные концентраты (25-35% Cu) плавят без обжига, а бедные (8-25%Cu) подвергают обжигу. Для обжига концентратов применяют многоподовые печи с механическим перегреванием. Такие печи работают непрерывно.

Выплавка медного штейна

Медный штейн, состоящий в основном из сульфидов меди и железа (Cu2S+FeS=80-90%) и других сульфидов, а также окислов железа, кремния, алюминия и кальция, выплавляют в печах различного типа. Комплексные руды, содержащие золото, серебро, селен и теллур, целесообразно обогащать так, чтобы в концентрат была переведена не только медь, но и эти металлы. Концентрат переплавляют в штейн в отражательных или электрических печах. Сернистые, чисто медныеруды целесообразно перерабатывать в шахтных печах. При высоком содержании серы в рудах целесообразно применять так называемый процесс медно-серной плавки в шахтной печи с улавливанием газов и извлечением из них элементарной серы. В печь загружают медную руду, известняк, кокс и оборотные продукты. Загрузку ведут отдельными порциями сырых материалов и кокса. В верхних горизонтах шахты создается восстановительная среда, а в нижней части печи – окислительная. Нижние слои шихты плавятся, и она постепенно опускается вниз навстречу потоку горячих газов. Температура у фурм достигается 1500 ºС на верху печи она равна примерно 450 ºС. Столь высокая температура отходящих газов необходима для того, чтобы обеспечить возможность из очистки от пыли до начала конденсации паров серы. В нижней части печи, главным образом у фурм, протекают следующие основные процессы: а) Сжигание углерода кокса C + O2 = CO2 б) Сжигание серы в виде сернистого железа 2FeS + 3O2 = 2FeO + 2SO2 в) Образование силиката железа 2 FeO + SiO2 =(FeO)2 × SiO2 Газы, содержащие CO2, SO2, избыток кислорода и азот, проходятвверх через столб шихты. На этом пути газов происходит теплообмен между шихтойи ними, а также взаимодействие CO2 с углеродом шихты. При высоких температурах CO2 и SO2 восстанавливаются углеродом кокса и при этом образуется окись углерода, сероуглерод и серная окись углерода (COS): CO2 + C = 2CO 2SO2 + 5C = 4CO+ CS2 SO2 + 2C = COS+ CO В верхних горизонтах печи пирит разлагается по реакции: FeS2 = Fe + S2 При температуре около 1000 0Сплавятся наиболее легкоплавкие эвтектики из FeS и Cu2S, в результате чего образуется пористая масса. В порах этой массы расплавленный поток сульфидов встречается с восходящим потоком горячих газов и при этом протекают химические реакции, важнейшие из которых указаны ниже: а) образование сульфида меди из закиси меди 2Cu2O + 2FeS +SiO2 = (FeO)2 × SiO2 + 2Cu2S; б) образование силикатов из окислов железа 3Fe2O3+ FeS + 3,5SiO2 = 3,5(2FeO × SiO2) + SO2; 3Fe3O4+ FeS + 5SiO2 = 5(2FeO × SiO2) + SO2; в) разложение CaCO3 и образование силиката извести CaCO3 + SiO2= CaO × SiO2 + CO2; г) восстановление сернистого газа до элементарной серы SO2 + C = CO2+ ½ S2 В результате плавки получаются штейн, содержащий 8-15% меди (Cu), шлак состоящий в основном из силикатов железа и извести, колошниковый газ, содержащий серу и её соединения (S2, COS, H2S), и углекислый газ (CO2). Из газа сначала осаживают пыль, затем из него извлекают серу (до 80% S). Чтобы повысить содержание меди в штейне, его подвергают сократительной плавке. Плавку осуществляют в таких же шахтных печах. Штейн загружают кусками размером 30-100 мм вместе с кварцевым флюсом, известняком и коксом. Расход кокса составляет 7-8% от массы шихты. В результате получают обогащенный медью штейн (25-40% Cu) и шлак (0,4-0,8% Cu). Температура плавления переплавки концентратов, как уже упоминалось, применяют отражательные и электрические печи. Иногда обжиговые печи располагают непосредственно над площадкой отражательных печей с тем, чтобы не охлаждать обожженные концентраты и использовать их тепло. По мере нагревания шихты впечи протекают следующие реакции восстановления окиси меди и высших оксидов железа: 6CuO + FeS = 3Cu2O+ SO2 + FeO; FeS + 3Fe3O4+ 5SiO2 = 5(2FeO × SiO2) + SO2 В результате реакции образующейся закиси меди Cu2Oс FeS получается Cu2S: Cu2O + FeS = Cu2S+ FeO Сульфиды меди и железа, сплавляясь между собой, образуют первичный штейн, а расплавленные силикаты железа, стекая по поверхности откосов, растворяют другие оксиды и образуют шлак. Благородные металлы (золото и серебро) плохо растворяются в шлаке и практически почти полностью переходят в штейн. Штейн отражательной плавки на 80-90% (по массе) состоит из сульфидов меди и железа. Штейн содержит, %:15-55 меди; 15-50 железа; 20-30 серы; 0,5-1,5 SiO2; 0,5-3,0 Al2O3; 0.5-2.0(CaO + MgO); около 2% Zn и небольшое количество золота и серебра. Шлак состоит в основном из SiO2, FeO, CaO, Al2O3 и содержит 0,1-0,5 % меди. Извлечение меди и благородных металлов в штейн достигает 96-99 %.

Конвертирование медного штейна

Изобрел конвертер для получения меди русский инженер Г. С. Семенников в 1866 г. Он предложил применить конвертер типа бессемеровского для продувки штейна. Продувка штейна снизу воздухом обеспечила получение лишь полусернистой меди (около 79% меди) – так называемого белого штейна. Дальнейшая продувка приводила к затвердеванию меди. В 1880 г. русский инженер предложил конвертер для продувки штейна с боковым дутьем, что и позволило получить черновую медь в конвертерах. Конвертер делают длиной 6-10 метров, с наружным диаметром 3-4 метра. Производительность за одну операцию составляет 80-100 т. Футеруют конвертер магнезитовым кирпичом. Заливку расплавленного штейна и слив продуктов осуществляют через горловину конвертера, расположенной в средней части его корпуса. Через ту же горловину удаляют газы. Фурмы для вдувания воздуха расположены по образующей поверхности конвертера. Число фурм обычно составляет 46-52, а диаметр фурмы – 50мм. Расход воздуха достигает 800 м2/мин. В конвертер заливают штейн и подают кварцевый флюс, содержащий 70-80% SiO2, и обычно некоторое количество золота. Его подают во время плавки, пользуясь пневматической загрузкой через круглое отверстие в торцевой стенке конвертеров, или же загружают через горловину конвертера. Процесс конвертирования ведется в циклическом режиме при температуре 1250-1350 °С и состоит из двух периодов. В первом периоде удаляют железо и связанную с ним серу. Первый период (окисление сульфида железа с получением белого штейна) длится от 6 до 24 часов в зависимости от содержания меди в штейне. Загрузку кварцевого флюса начинают с начала продувки. По мере накопления шлака его частично удаляют и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере. В первом периоде протекают следующие реакции окисления сульфидов: 2FeS + 3O2 =2FeO + 2SO2 + 930360 Дж 2Cu2S + 3O2= 2Cu2O + 2SO2 + 765600 Дж Пока существует FeS, закись меди не устойчива и превращается в сульфид: Cu2O + FeS = Cu2S+ FeO Закись железа шлакуется добавляемым в конвертер кварцевым флюсом: 2FeO + SiO2 =(FeO) × SiO2 При недостатке SiO2 закись железа окисляется домагнетита: 6FeO + O2 = 2Fe3O4, который переходит в шлак. Температура заливаемого штейна в результате протекания этих экзотермических реакций повышается с1100–1200 до 1250-1350 0С. Более высокая температура нежелательна, и поэтому при продувке бедных штейнов, содержащих много FeS, добавляют охладители – твердый штейн, сплески меди, корки из ковшей, медные концентраты. В результате, в конвертере остается, главным образом, так называемый белый штейн, состоящий из сульфидов меди, а шлак сливается в процессе плавки. Он состоит в основном из различных оксидов железа (магнетита, закиси железа) и кремнезема, а также небольших количеств глинозема, окиси кальция и окиси магния. При этом, как следует из вышесказанного, содержание магнетита в шлаке определяется содержанием кремнезема. В шлаке остается 1,8-3,0% меди. Для ее извлечения шлак в жидком виде направляют в отражательную печь или в горн шахтной печи. Во втором периоде, называемом реакционным, продолжительность которого составляет 2-3 часа, из белого штейна образуется черновая медь. В этот период окисляется сульфид меди и по обменной реакции выделяется медь: 2Cu2S + 3O2= 2Cu2O + 2SO2 Cu2S + 2Cu2O= 6Cu + O2 Таким образом, в результате продувки получают черновую медь, содержащая 98,4-99,4% — меди, 0,01-0,04% железа, 0,02-0,1% серы, и небольшое количество никеля, олова, мышьяка, серебра, золота и конвертерный шлак, содержащий 22-30% SiO2, 47-70% FeO, около 3% Al2O3 и 1.5-2.5% меди.

Ответы к упражнениям § 7. Химия 9 класс.

Упражнение: 1

В работе немецкого ученого в области металлургии и врача Г.Агриколы (XVI в.) «12 книг о металлах» сказано: «Подвергая руду нагреванию, обжигу и прокаливанию, удаляют этим часть веществ, примешанных к металлу…» и далее «…плавка необходима, так как только посредством ее горные породы и затвердевшие соки (рассолы) отделяются от металлов, которые приобретают свойственный им цвет, очищаются и становятся во многих отношениях полезны человеку». О каких видах металлургии писал Агрикола? Проиллюстрируйте его высказывание примерами уравнений химических реакций..

Пирометаллургия обжиг: 2CuS + 3O2 = 2CuO + 2SO2 плавка: 2CuO + C = 2Cu + CO2

Упражнение: 2

Какой метод получения меди – с помощью серной кислоты или бактериальный – экологически более безопасен?

Бактериальный метод более безопасен с экологической точки зрения, так как в процессе получения меди не используются агрессивные, вредные вещества и поэтому образуется меньше отходов вредных для окружающей среды

Упражнение: 3

Почему щелочные и щелочноземельные металлы нельзя получить гидрометаллургическим методом?

Гидрометаллургический метод – это восстановление металлов из водных растворов их соединений (растворимых солей этих металлов). Так как щелочные и щелочноземельные металлы взаимодействуют с водой, то получить их из водного раствора их соли невозможно они вступают в реакцию с водой.

Упражнение: 4
Предложите технологическую цепочку производства свинца из минерала галенита PbS. Запишите уравнения реакций.

PbS → PbO → Pb 2PbS + O2 = 2PbO + 3SO2 PbO + Al = Pb + Al2O3

reshebnikxim.narod.ru

Технология

Бессемерование – процесс плавки чугуна, который позволяет получить сталь относительно высокого качества. Следует отметить, что подобная технология на сегодняшний день применяется крайне редко. Это связано с появлением довольно большого количества современных технологий, которые позволяют получить более качественную сталь за меньшие сроки.

Весь бессемеровский процесс производства стали можно разделить на несколько основных этапов:

  1. Выполняется заливка чугуна в конвертор через горловину. Важным моментом назовем то, что в подобном положении устройство должно находится в горизонтальном положении, так как есть вероятность заливки сопла металлом. Сопла необходимы для того, чтобы продувать шихту. Именно окисление примесей и их вывод в качестве шлаков позволяет получать сталь повышенного качества.
  2. Следующий этап заключается в пуске дутья и переворачивании конвертора в вертикальное положение.
  3. Для того чтобы обеспечить окисление вредных примесей и излишков углерода проводится продувка металла воздухом. На данном этапе происходит образование шлака, с которым и уходят ненужные химические вещества.
  4. После достаточно длительного периода продувки конвертор снова переворачивается в горизонтальное положение, прекращается продувка расплавленного металла.
  5. Выполняется слив расплавленного металла в ковш и его раскисление путем добавления специальных веществ.

На момент начала продувки состава происходит активное окисление марганца и кремния. На первоначальной стадии углерод практически не окисляется. Это связано с тем, что данный компонент реагирует исключительно на воздействие высоких температур. Кроме этого, на процесс окисления примесей оказывает влияние термодинамические факторы, которые определяют активность переноса кислорода к местам протекания бессемеровского процесса.

Рассматривая данную технологию отметим нижеприведенные моменты:

  1. На первом этапе происходит образование большого количества различных шлаков, который в составе имеет высокую концентрацию кремнезема. Временной интервал протекания первого этапа составляет 2-5 минут.
  2. На втором этапе бессемеровского процесса производства обеспечиваются наиболее благоприятные условия для окисления углерода. Примером можно назвать повышение рабочей температуры примерно до 2000 градусов Цельсия. Протяженность данного этапа составляет примерной 13 минут. В конце этого этапа температура понижается примерно до отметки 1600 градусов Цельсия.
  3. Добиться высокого качества стали можно различными методами бессемерования. Все зависит от особенностей состава применяемого лома, концентрации крема в составе.
  4. Для того чтобы исключить вероятность возникновения процесса передувки металла активная подача воздуха прекращается уже на втором этапе.
  5. Только на третьем этапе можно отметить активное окисление железа, что становится причиной выделения бурого дыма. Данный этап начинается на тот момент, когда концентрация углерода меньше 0,1%.

Как ранее было отмечено, бессемеровский метод изготовления стали получил большое распространение по причине высокой производительности. В литейных цехах довольно часто устанавливается оборудование, которое имеет садку около 35 тонн.

Бессемеровский метод выплавки стали

Сегодня бессемеровский метод производства стали практически не применяется, что связано с низким качеством получаемого металла и его достаточно высокой стоимостью.

Источник

§ 12. Получение металлов —

1. В работе немецкого ученого в области металлургии и врача Г. Агриколы (XVI в.) «12 книг о металлах» сказано: «Подвергая руду нагреванию, обжигу и прокаливанию, удаляют этим часть веществ, примешанных к металлу…» и далее «…плавка необходима, так как только посредством ее горные породы и затвердевшие соки (рассолы) отделяются от металлов, которые приобретают свойственный им цвет, очищаются и становятся во многих отношениях полезны человеку». О каких видах металлургии писал Агрикола? Проиллюстрируйте его высказывание примерами уравнений химических реакций.
Г. Афикол в своей книге имел в виду пирометаллургию. Пирометаллургические процессы включают обжиг, при этом содержащиеся в рудах соединения металлов, в частности сульфиды, переводятся в оксиды, а сера удаляется в виде SO2, например:
2. Какой метод получения меди — с помощью серной кислоты или бактериальный — экологически более безопасен?
Экологически более безопасен бактериальный метод получения меди.
3. Почему щелочные и щелочноземельные металлы нельзя получить гидрометаллургическим методом?
Щелочные и щелочноземельные металлы нельзя получить гидрометаллургическим методом, потому что данный метод основан на выделении металлов из раствора под действием электрического тока. А если мы из раствора выделим щелочной металл в чистом виде, то он сразу же будет взаимодействовать с водой, образуя гидроксид.
4. Предложите технологическую цепочку производства свинца из минерала галенита PbS. Запишите уравнения реакций. 5. Как можно получить из пирита FeS2 железо и серную кислоту? Запишите уравнения реакций. 6. Сколько килограммов меди получается из 120 т обогащённой горной породы, содержащей 20% сульфида меди (I), если выход меди составляет 90% от теоретически возможного?



gdz-himiya.ru

Области применения

Наибольшим спросом медь пользуется в электротехнике. Благодаря низкому электрическому сопротивлению, ее активно применяют для изготовления проводов, кабелей, проводящих элементов трансформаторов, делают из нее обмотки электродвигателей. На нужды отрасли уходит более половины всей добываемой меди.

Металл обладает хорошей прочностью и пластичностью, что делает его подходящим для изготовления изделий сложной формы: предметов быта, украшений; для создания бесшовных труб. Медные трубы часто применяются в оборудовании и различных инженерных системах для организации теплообмена. Здесь используются такие свойства меди, как низкий коэффициент теплового расширения и высокая теплопроводность.

Широкое применение находят медные сплавы:

  • бронза — соединение с оловом, также название применяется и для сплавов меди с другими металлами, такими как алюминий, свинец, кремний, бериллий и прочими;
  • латунь — с цинком;
  • мельхиор, нейзильбер, манганин — с никелем;

Также медь входит как один из компонентов в другие соединения, например, в дюрали. Ювелиры часто применяют медные сплавы с добавлением золота.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]