Магнитопорошковая дефектоскопия сварных соединений

Среди неразрушающих методов проверки надежности сварных соединений магнитопорошковый контроль занимает лидирующие позиции. Это связано с тем, что магнитопорошковая дефектоскопия не требует дорогого и сложного оборудования, для работы с которым требуется серьезная подготовка. Этот метод контроля обнаруживает поверхностные и скрытые от глаз дефекты. С помощью дефектоскопа проводят оценку состояния швов в труднодоступных местах, на высоте. Распространенность магнитопорошкового контроля соединений, образованных сваркой, объясняется наглядностью результатов. У дефектоскопов высокая степень выявления дефектов, снижающих прочность опорных металлоконструкций, сосудов высокого давления, технологических емкостей, трубопроводов.

Определение и особенности метода

Зная школьный курс физики, несложно представить сущность определения дефектов. Все материалы делятся на две группы: проводящие электроны и диэлектрики. Принцип магнитопорошкового метода неразрушающего контроля основан на искажении рисунка магнитных линий вокруг несплошностей, возникающих при сварке. Если в диффузном слое или зоне термического влияния образуются свищи, трещины, силовые линии меняют направление, огибают препятствия.

На участках с дефектами линии образуют пик, выходящий за пределы детали. Если на местах искажения присутствуют мелкие частицы ферромагнитных материалов, они изменят пространственное положение, сориентируются по направлению силовых линий магнитного поля.

Чем больше неоднородность поля над дефектом, тем сильнее возникающая электромагнитная сила, перемещающая намагниченные частицы. В области дефекта образуются цепочки частиц. Только если несплошность расположена под прямым углом к направлению поля, она не будет видна по положению частиц.

Магнитная дефектоскопия: характеристика и применение

Принцип работы данного метода заключается в том, что при намагничивании ферромагнитного металла и сплавов в областях с нарушенной внутренней целостностью появляется зона рассеяния, а на краях дефектов образуются полюса. Происходит фиксация зоны магнитного рассеяния на внешней части детали точно на поверхности той зоны, где внутри образовался дефект. Силовые линии магнитов огибают зону расположения брака и таким образом как бы очерчивают конкретное дефектное место.

Изъяны, что располагаются на глубине до 2 мм, вытесняют силовые импульсы магнитов над поверхностью детали, создавая локальное поле магнитного рассеяния. Это происходит благодаря тому, что:

  • дефект разного происхождения имеет низкую магнитную проницаемость в соотношении с основным металлом (проницаемость меньше примерно в тысячу раз);
  • сила возмущения электромагнитного потока зависит от расположения изъяна относительно направления силовых магнитных линий.

Существуют дефекты, которые могут вызвать возмущения в распределении линий магнитного потока, не образуя при этом локального рассеяния. Поэтому чем большее препятствие создает сварочный дефект, тем сильнее он вызывает магнитное возмущение. Если место расположения дефекта параллельно направлению электромагнитных силовых линий, то полученное возмущение магнитного потока будет небольшим. Но если тот же самый изъян будет находиться перпендикулярно или под наклоном по отношению к направлению магнитных линий потока, то степень рассеяния потока будет обширной.

С помощью магнитной дефектоскопии есть возможность обнаружения внутренних микротрещин с размером до 0,001 мм ширины.

Виды намагничивания (направления):

  1. Циркуляционный (для обнаружения продольных трещин).
  2. Продольный (для поиска поперечных трещин).
  3. Комбинированный.

Преимущества данного способа контроля:

  • высокая чувствительность и точность обнаружения мест локализации дефектов;
  • быстрая скорость контрольного процесса;
  • доступное оборудование.

Использование магнитного метода контроля сварочных работ возможно только для магнитных металлов.

Технология проведения магнитопорошкового контроля

Последовательность операций для всех сварных соединений одинаковая. Магнитопорошковый метод регламентирован стандартом. Последовательность действий:

  1. Подготовка поверхности заключается в очистке шва и зоны термического влияния от окалины, следов ржавчины, загрязнений, следов смазочных материалов. Для четкости контрольного рисунка темные металлы покрывают белой водоэмульсионной краской, слой делают тонким.
  2. Для проведения магнитно порошковой дефектоскопии заготовки намагничивают (способы указаны в отдельном разделе). От намагничивания в дефектоскопии зависит чувствительность контроля.
  3. Индикатор с ферромагнитными частицами наносится способом, зависящим от типа приборов для дефектоскопии.
  4. Осмотр контролируемой области при необходимости проводится с применением оптики и устройств, предусмотренных нормативами.
  5. Расшифровка индикаторного рисунка, полученного при магнитопорошковой дефектоскопии, проводится с фиксацией дефектов после неизменного положения индикаторных частиц. Контролер расшифровывает рисунок, сопоставляя его со снимками из атласа дефектов. Данные заносятся в журнал.
  6. Размагничивание – финишная операция. На детали воздействуют магнитным полем с затухающей амплитудой или нагревают до точки Кюри. Обязательно при дефектоскопии проводится контроль размагниченности.
  7. Остатки магнитопорошкового индикатора удаляют вручную или с использованием протирочных составов.

Виды магнитного неразрушающего контроля и их технологии выполнения

Ключевая причина использования различных методов магнитного контроля – целостность проверяемых изделий. Для контроля качества сварочных соединений используют магнитопорошковый и магнитографический методы, реже применяется метод с помощью индукции.

Магнитопорошковая дефектоскопия

Контроль качества дефектов посредством магнитопорошкового метода базируется на обнаружении локальной зоны магнитного потока рассеяния над поверхностью дефекта с помощью использования ферромагнитного порошка. Возможно использование порошка в сухом виде или в жидком, в составе водной или масляной магнитной суспензии. На зону сварочного соединения наносят порошок с магнитными частицами. Далее на эти частицы порошка начинает воздействовать нелинейная сила поля (пондеромоторная), что стремится притянуть ферромагнитные частицы в область наивысшей сосредоточенности магнитных силовых линий. Вследствие этого железосодержащие частицы образуют своеобразный рисунок на поверхности внутреннего дефекта. Этот контроль можно провести только на гладких, ровных и чистых поверхностях металлов.

Варианты использования ферромагнитного порошка:

  1. На зону сварочного шва наносят ферромагнитный состав специальным распылителем.
  2. Свариваемую деталь полностью опускают в емкость с порошком.

Оба варианта допустимы как для сухого, так и для жидкого видов порошка. Данной техникой могут быть проверены сварочные швы с ферромагнитным составом, имеющие относительную магнитную проницаемость.

Сварочные дефекты, которые поддаются обнаружению магнитопорошковым способом:

  • поверхностные, с шириной от 0,002 мм и глубиной от 0,01 мм и больше;
  • подповерхностные, расположенные до 2 мм глубины;
  • внутренние, глубина более 2 мм (для расслоений или трещин с большим размером);
  • брак под немагнитным покрытием с учетом того, что толщина покрытия составляет не больше 0,25 мм.

Необходимое оборудование:

  1. Намагничивающее устройство.
  2. Ферромагнитный порошок или магнитопорошковая суспензия.
  3. Распылитель.
  4. Дефектоскоп.
  5. Тестовые образцы с браком.
  6. Размагничивающая установка.


Примерная стоимость магнитного дефектоскопа на Яндекс.маркет
Следует отметить, что для поиска подповерхностных дефектов использование порошка в сухом виде позволяет достигнуть лучших результатов по сравнению с «мокрым» видом. Это обусловлено его более высокой степенью чувствительности. Для оценки чувствительности самого порошка используются контрольные образцы деталей с разной степенью дефектов.

Магнитографический метод поиска брака

Магнитографический метод для осуществления контроля сварочных работ базируется на поиске магнитного поля рассеяния, что возникает в зоне дефекта при намагничивании детали. Из-за образовавшихся трещин или раковин место рассеяния остается зафиксированным, как отпечаток магнитных возмущений на эластичной ленте дефектоскопа. Дефектоскоп обязательно должен плотно прилегать к сварочному соединению. На магнитной ленте частицы ферромагнитного порошка остаются неподвижными, таким образом обозначая зону локализации взаимодействия магнитного характера с дефектным полем.

Магнитографический метод используется для контроля сварочных швов с толщиной до 12 мм. Данным методом возможно обнаружить так называемые макротрещины, газовую пористость, включения из шлака, сварочные непровары.

Последовательность действий контроля:

  1. Подготовка поверхности детали для осуществления контроля (удаление шлака, брызг, грязи).
  2. Плотное приложение ленты дефектоскопа на сварочное соединение.
  3. Намагничивание металла, согласно толщине сварочного шва и его свойств.
  4. Расшифровка и оценка полученных результатов с помощью считывающего устройства дефектоскопа.
  5. Размагничивание проверяемой детали.

Настройка дефектоскопов осуществляется по эталонным лентам, зафиксированным на тестовых образцах сварных швов. Место локализации дефекта и его внутренняя глубина определяются на экране-индикаторе. Форма полученного рисунка будет соответствовать области локализации дефекта, глубина расположения трещины отображается насыщенностью почернения на экране.

Магнитографическим методом лучше всего обнаруживаются дефекты плоскостного типа, такие, как трещины, несплавления металлов, сварочные непровары с максимальной глубиной залегания до 20-25 мм.

Необходимое оборудование:

  • намагничивающее устройство;
  • дефектоскопы для работы с ферромагнитной лентой;
  • переносная станция питания;
  • магнитная лента на триацетатной или лавсановой основе;
  • контрольные образцы сварочных швов;
  • размагничивающая техника.

Способы нанесения индикатора

Для магнитно порошкового контроля применяют сухие, влажные, пастообразные индикаторы. Сухой представляет собой смесь металлических опилок мелких фракций, он наносится на поверхность в естественном состоянии, без добавления жидкостей.

Сухой метод дефектоскопии эффективен для обнаружения несплошностей, шлаковых включений на поверхности или дефектов подповерхностного типа. Для изготовления магнитопорошковых индикаторов применяют железную окалину, баббит, магнетит, другие хорошо намагничивающиеся материалы. Поле в сварной заготовке создается П-образным электромагнитом, подключенным к источнику постоянного или переменного тока силой от 300 до 600 ампер. Ферромагнитная смесь наносится из аэрозольной упаковки, рассеивается ситом, направляется грушей.

В мокрых индикаторах намагничивающиеся частички пребывают во взвешенном состоянии. Их добавляют:

  • в воду с антикоррозионными веществами;
  • раствор жидкого мыла;
  • керосин;
  • трансформаторное масло;
  • специальный концентрат на основе полимеров.

Для дефектоскопии наносят составы несколькими методами:

  • с помощью кисти;
  • погружая в суспензию;
  • поливая жидкостью исследуемую поверхность.

Мокрый способ дефектоскопии применяется для выявления поверхностных несплошностей сварных швов.

Магнитно-порошковая дефектоскопия

Магнитно-порошковая дефектоскопия основана на обследовании магнитного сопротивления шва или металла цельной детали. На деталь накладывают сверхчувствительную фотобумагу, на которую насыпают ровный тонкий слой порошка и помещают в поле сильного соленоида постоянного тока, порошок опрыскивают быстросохнущим прозрачным лаком ( цапонлак и др.), затем бумагу освещают сильным светом и проявляют. На бумаге создается картина магнитного поля, на которой определяется наличие или отсутствие дефектов.  

Намагничивание образца с дефектом в однородном продольном поле.| Влияние дисперсности магнитного порошка на выявляемость дефектов.  

Магнитно-порошковая дефектоскопия выявляет поверхностные и подповерхностные дефекты типа нарушения сплошности. Магнитно-порошковую дефектоскопию применяют только для ферромагнитных материалов, которые подвергаются намагничиванию. При помещении изделия ( рис. 3.35) с дефектом в продольное однородное магнитное поле в месте нахождения подповерхностного скрытого дефекта магнитный поток будет рассеиваться в пространство, что создает на поверхности изделия магнитные полюса.  

Магнитно-порошковая дефектоскопия позволяет выявлять поверхностные и подповерхностные ( на глубине до 1 — 2 мм) дефекты сварных соединений типа трещин, непроваров, пор, подрезов.  

Намагничивание образца с дефектом в однородном продольном поле.| Влияние дисперсности магнитного порошка на выявляемость дефектов.  

Магнитно-порошковая дефектоскопия осуществляется только в полуавтоматическом режиме. Автоматизации подвергаются процессы намагничивания и размагничивания изделий. Возможности магнитно-порошковой дефектоскопии в значительной мере ограничиваются качеством применяемого магнитного порошка и размерами его зерен. Графики ( рис. 3.36) показывают связь между размерами зерен порошка и степенью выявления различных де-с Ьектов. Магнитные свойства по-рошка влияют при этом на качество контроля в меныг.  

Схема ультразвукового контроля заклепок.  

Магнитно-порошковую дефектоскопию клепаных барабанов проводят для выявления поверхностных дефектов на обечайках, днищах, трубных и заклепочных отверстиях. Для контроля металла обечаек и днищ барабанов токоподводящие электроды устанавливают на расстоянии 180 — 200 мм.  

Схема вырезки образцов для контроля механических свойств металла барабана.  

По окончании магнитно-порошковой дефектоскопии возможные прижоги металла в местах контакта токоподводящих электродов удаляют абразивным инструментом. Дефектные места могут быть выбраны шлифовальной машинкой и повторно проконтролированы магнитно-порошковой дефектоскопией или травлением.  

В практике проведения магнитно-порошковой дефектоскопии хорошо зарекомендовали себя намагничивающие устройства в виде портативных электромагнитов переменного тока, отличающиеся простотой конструкции. Эти устройства рекомендуется применять при контроле изделий с толщиной стенки более 20 мм. Магнитопровод набирают из пластин электротехнического железа толщиной 0 2 — 0 6 мм. Питание осуществляется от сети переменного тока напряжением 12 В. К электромагниту необходимо иметь полюсные наконечники различной формы для обеспечения надежного контакта при локальном намагничивании детали или узла.  

Схема намагничивания металла барабана для обнаружения осевых трещин в стенках трубных отверстий и штуцеров.  

Поверхность, подлежащая магнитно-порошковой дефектоскопии, должна быть зачищена до металлического блеска. При проведении эксплуатационного контроля хорошие результаты получаются при контроле по незачищенной поверхности, покрытой тонким слоем нитроэмали.  

Кинетическая схема контрольно-сортировочного полуавтомата.  

В случае применения магнитно-порошковой дефектоскопии обычно используют с. При э ом намагничивание производится либо пропусканием через изделие ( или близко расположенный проводник) электрического тока, либо при помощи ввода изделия во внешнее магнитное поле, создаваемое катушкой с различными сердечниками. Известен ряд автоматов, применяемых для целей намагничивания.  

Виды намагничивания

При магнитопорошковом методе контроля чаще пользуются видами намагничивания, применимыми к деталям простой формы:

  • циркулярный создает равномерное магнитное поле внутри детали, на концах нет магнитных полюсов;
  • продольный называют полюсным: на одном из концов заготовки образуется плюс, на другом минус, поле направлено вдоль детали;
  • комбинированный предусматривает одновременное воздействие нескольких разнонаправленных магнитных полей (в двух взаимно перпендикулярных направлениях, трех и более).

На производстве используется вид намагничивания сварных швов во вращающемся магнитном поле.

Для намагничивания применяются различные типы электротоков:

  • постоянный создает равномерную индукцию;
  • переменный применим для менее чувствительных методов контроля;
  • импульсный по характеристикам близок к постоянному.

В приборы для дефектоскопии встраивают генераторы однопериодного и выпрямленного тока.

Законодательная база

Основные документы, регулирующие проведение МПД

Название Описание
ГОСТ Р 56512-2015 Контроль неразрушающий. Магнитопорошковый метод. Типовые технологические процессы
ГОСТ Р ИСО 9934-1-2011 Контроль неразрушающий. Магнитопорошковый метод. Часть 1
ГОСТ Р ИСО 9934-2-2011 Контроль неразрушающий. Магнитопорошковый метод. Часть 2.
ГОСТ Р 53700-2009 (ИСО 9934-3:2002) Контроль неразрушающий. Магнитопорошковый метод. Часть 3
ГОСТ Р 55612-2013 Контроль неразрушающий магнитный. Термины и определения

Почему стоит заказать магнитопорошковый контроль в ООО «НТЦ «РЭП»

  • аттестованная лаборатория и персонал. Наши специалисты аттестованы в соответствии с ПБ 03-440-02 и ISO 9712 по магнитному и другим методам контроля. Это позволяет нам работать со всеми объектами, указанными в утвержденном Ростехнадзором перечне объектов контроля. Также работаем с объектами российского морского регистра судоходства.
  • полноценная материально-техническая база. Применяем оборудование и расходные материалы от мировых брендов.
  • универсальность. Используем намагничивающее устройство с постоянными магнитами, что позволяет работать в местах, где нет источника тока. В нашу команду входят промышленные альпинисты, благодаря чему мы работаем на высоте.

Хотите заказать , но еще остались вопросы?

Проконтролируйте состояние трубопроводов или металлоконструкций на производстве с минимумом вложений – позвоните по телефону или обратитесь через форму обратной связи. Мы проконсультируем Вас!

Чувствительность магнитопорошковой дефектоскопии

Дефектоскопия проводится на материалах с относительной магнитной проницаемостью не ниже 40, чувствительность МПД зависит:

  • от электромагнитных свойств материала, используемого для исследований (мобильность индикаторных частиц);
  • магнитных характеристик заготовок (способности намагничиваться);
  • рода тока, при постоянном формируется стабильное магнитное поле
  • гладкости поверхности детали, шероховатость градируется от 2,5 до 40 микрон, чем ниже шероховатость, тем точнее контроль;
  • напряженности намагничивающего поля;
  • положения несплошностей и других дефектов относительно индукционных линий;
  • способа нанесения индикатора на поверхность детали;
  • условий проведения испытаний (выше точность у «сухого» метода контроля сварных соединений);
  • метод регистрации индикаторного рисунка над дефектами.

Магнитопорошковый метод

Магнитопорошковый метод контроля заключается в том, что на поверхность намагниченного сварного соединения наносят ферромагнитный порошок в виде суспензии, содержащей также керосин, масло и мыльный раствор («мокрый» метод), или в виде аэрозоля («сухой» метод). Под действием втягивающей силы магнитных полей рассеяния частицы порошка перемещаются по поверхности соединения и скапливаются в виде валиков над дефектами. Форма этих скоплений соответствует очертаниям выявляемых дефектов.

Методика контроля. Магнитопорошковый метод контроля включает в себя следующие операции (ГОСТ 21105 — 85):

  1. подготовка поверхностей к контролю;
  2. подготовка суспензии, заключающаяся в интенсивном перемешивании магнитного порошка с транспортирующей жидкостью;
  3. намагничивание контролируемого сварного соединения;
  4. нанесение порошка на поверхность контролируемого соединения;
  5. осмотр поверхности контролируемого соединения и выявление участков, покрытых порошком;
  6. размагничивание соединения.

Данный метод характеризуется высокой чувствительностью к тонким и мелким трещинам, простотой выполнения, оперативностью и наглядностью результатов. Его широко используют для контроля продольных сварных швов конструкций, выполненных из магнитных материалов, и в частности для выявления трещин и узких (стянутых) непроваров в стыковых швах трубопроводов, полученных дуговыми способами. Для повышения чувствительности контроля часть сварного шва, выступающего над лицевой поверхностью соединения, перед испытанием целесообразно удалить.

Чувствительность метода. Чувствительность данного метода зависит от ряда факторов: размера частиц ферромагнитного порошка и способа его нанесения («сухой» или «мокрый»), напряженности приложенного намагничивающего поля, рода тока (переменный или постоянный), формы, размеров и глубины залегания дефектов, их ориентации относительно поверхности сварного соединения и направления намагничивания, состояния и формы поверхности, а также от способа намагничивания.

Ферромагнитный порошок должен иметь частицы размером 5 … 10 мкм. Для выявления глубоких дефектов применяют более крупный магнитный порошок. Для приготовления магнитных суспензий используют магнитный порошок с мелкими частицами. Кроме того, для достижения максимальной подвижности частицы магнитного порошка должны иметь правильную форму. Дополнительную подвижность частицы приобретают при наличии на них пигментного покрытия с низким коэффициентом трения.

Род тока намагничивания и способ нанесения ферромагнитного порошка, существенно не влияют на обнаружение поверхностных дефектов, но при этом они заметно сказываются на диагностике подповерхностных дефектов. Преимущество использования в этом методе постоянного тока обусловлено тем, что он создает магнитное поле, глубоко проникающее в металл. Однако сварные соединения из металла толщиной 20 мм не следует намагничивать постоянным током, так как их невозможно размагнитить после контроля.

При использовании для намагничивания переменного тока под влиянием скин-эффекта возрастают плотности тока и магнитного потока у поверхности сварного соединения, что способствует лучшему выявлению только поверхностных дефектов.

Преимущество использования «сухого» способа нанесения для обнаружения подповерхностных дефектов объясняется тем, что для перемещения ферромагнитной частицы в вязкой суспензии требуется бо́льшая сила воздействия магнитного потока, чем для перемещения той же частицы в воздухе.

С увеличением напряженности приложенного намагничивающего поля (до достижения индукции насыщения) возрастает чувствительность данного метода контроля.

При контроле магнитными методами наиболее уверенно выявляются плоскостные дефекты (трещины, непровары и несплавления), ориентированные под углом 20 … 90° к направлению магнитного потока. Дефекты округлой формы (поры, шлаковые включения и раковины) не могут создать достаточного потока рассеяния

и, как правило, при магнитном контроле обнаруживаются плохо. Практикой установлено, что магнитопорошковым методом выявляются поверхностные и подповерхностные (на глубине не более 2 мм) трещины шириной более 1 мкм, глубиной более 50 мкм и длиной не менее 0,5 мм.

Возможно также обнаружение относительно крупных дефектов (непроваров, пор, шлаковых включений и др.) с площадью сечения более 2 мм2, находящихся на глубине 5 … 6 мм от поверхности шва. С увеличением глубины залегания дефектов уменьшается скорость образования скоплений магнитного порошка, что затрудняет их обнаружение и определение типа.

Чувствительность контроля в значительной мере зависит от качества поверхности, на которую наносится суспензия или порошок. Оптимальная шероховатость поверхности сварных соединений, подвергаемых магнитопорошковому контролю, соответствует параметру Ra 2,5 … 1,25 мкм. На такой поверхности обеспечивается наивысшая чувствительность метода. Увеличение шероховатости поверхности приводит к снижению чувствительности контроля. Так если после обработки поверхность контролируемого соединения приобретает шероховатость Ra 3,2 … 2,5 мкм, то контроль в тех режимах, которые обеспечивают выявление тонких дефектов (толщиной 1 мкм), затрудняется вследствие появления фона от магнитного порошка, что требует уменьшения напряженности намагничивающего поля, а следовательно, снижает чувствительность контроля.

Шлифованные поверхности (с шероховатостью Ra 0,32 мкм и более) из-за наличия на них бликов трудно осматривать и разбраковывать, особенно при прямом освещении лампами накаливания. Контрольный осмотр шлифованных поверхностей желательно производить в рассеянном свете или после покрытия их очень тонким (толщиной не более 15 мкм) снимающим блеск слоем краски, например нитроэмалью НЦ-25.

Если на поверхности контролируемого сварного соединения имеются резкие переходы (например, подрезы) или микронеровности, то ферромагнитный порошок скапливается не над дефектами, а на участках, содержащих такие переходы и углубления. Следовательно, в этом случае нельзя однозначно судить о наличии внутренних дефектов.

Способы намагничивания. Магнитный контроль производится либо в приложенном магнитном поле, либо при остаточной намагниченности. Первый способ применяют для обнаружения подповерхностных дефектов, расположенных на глубине более

10 мкм, а также когда сварное соединение выполнено из магнитомягкого материала (например, из стали) или имеет сложную форму и мощность дефектоскопа не позволяет намагнитить все это соединение вследствие его больших размеров. При этом контроль в приложенном магнитном поле не всегда обладает более высокой чувствительностью, чем контроль при остаточной намагниченности.

Если контроль осуществляют при остаточной намагниченности, то соединение предварительно намагничивают, а после снятия магнитного поля на его поверхность наносят ферромагнитную суспензию или порошок. Поскольку такой контроль возможен только при довольно большой остаточной намагниченности, его используют для проверки соединений из магнитотвердых материалов с коэрцитивной силой Нс > 800 А/м. Соединение, выполненное из материала с Нс < 800 А/м, проверять при остаточной намагниченности нельзя, так как над дефектом образуется слабое магнитное поле. Этот способ обладает следующими преимуществами: позволяет устанавливать соединение в любое требуемое положение для обеспечения хорошего освещения поверхности и возможности ее осмотра невооруженным глазом, а также для уменьшения вероятности прижога листовых деталей и контакта с головками дефектоскопа, так как для остаточного намагничивания ток пропускают по соединению кратковременно (в течение 0,1 … 0,5 с) с перерывами между включениями 1 … 2 с.

В практике магнитного контроля используют следующие способы намагничивания сварных соединений: комбинированный, циркулярный и полюсный. Комбинированное намагничивание производят только в приложенном магнитном поле, а циркулярное и полюсное — как в приложенном магнитном поле, так и при остаточной намагниченности.

При комбинированном намагничивании одновременно применяют два (или несколько) магнитных полей. Например, намагничивание трубы осуществляют, используя соленоид и пропуская ток через проводник, проходящий внутри этой трубы. Два намагничивающих поля складываются таким образом, чтобы силовые линии результирующего магнитного поля имели форму спирали. Результирующее поле проходит через все части объекта под различными углами, что повышает выявляемость дефектов, ориентированных в разных направлениях.

Циркулярное намагничивание применяют для обнаружения продольных дефектов (трещин, непроваров или вытянутых шлаковых включений). Выполняется такое намагничивание посредством

пропускания тока по контролируемой детали или через проводник, помещенный в имеющееся в этой детали отверстие. Циркулярное намагничивание наиболее эффективно при контроле цилиндрических деталей. Силу тока, А, пропускаемого по детали цилиндрической формы для ее намагничивания, рассчитывают по формуле

Iц = πDH,

где D — диаметр детали, см; Н — напряженность магнитного поля, А/см.

При выборе значения Н необходимо учитывать следующее: если точка Р′ начальной намагниченности (рис. 34) оказывается правее точки P максимальной относительной магнитной проницаемости, уменьшение площади поперечного сечения металла вследствие наличия дефекта вызовет увеличение магнитной индукции, а также может привести к возрастанию магнитной проницаемости и, как следствие, к уменьшению потока рассеяния. В результате дефект может оказаться не выявленным.

Наилучшие условия для обнаружения дефектов создаются в области спада кривой μ = f(Н) (точка Р′). При больших напряженностях поля Н разница между потоками рассеяния над дефектами и в окружающей среде уменьшается, что затрудняет выявление дефектов. Для возможности обнаружения большинства поверхностных дефектов в сварных соединениях из конструкционных сталей оптимальная напряженность магнитного поля на поверхности соединения в том случае, если контроль осуществляется при остаточной намагниченности, должна составлять 80 … 160 А/см.

Рис. 34. Зависимости магнитной индукции В и относительной магнитной проницаемости μ от напряженности магнитного поля Н для ферромагнитного материала: Р, Р’ — точки, соответствующие начальной намагниченности металла и области наилучшего обнаружения дефектов

Силу тока, А, необходимую для циркулярного намагничивания пластины, определяют по формуле

Iп = 2(b + S)/H,

где b и S — соответственно ширина и толщина пластины.

Полюсное намагничивание подразделяют на продольное, поперечное и нормальное. При продольном намагничивании направление намагничивающего поля совпадает с направлением оси сварного шва. Продольное намагничивание, осуществляемое с помощью электромагнитов, постоянных магнитов или соленоидов, используют для выявления поперечных дефектов, расположенных под углом не менее 20° к продольной оси шва. При поперечном намагничивании направление вектора напряженности магнитного поля перпендикулярно продольной оси шва. Нормальное намагничивание является частным случаем продольного и поперечного намагничиваний.

Чувствительность магнитного метода контроля, осуществляемого при продольной остаточной намагниченности, существенно зависит от скорости снятия намагничивающего поля. При быстром уменьшении напряженности поля дефекты обнаруживаются уверенно, а при медленном ослаблении поля с той же исходной напряженностью дефекты не выявляются или выявляются слабо, т. е. продолжительность снижения силы тока от максимального значения до нуля не должна превышать 5 мкс.

Аппаратура и материалы. Дефектоскопы, предназначенные для осуществления магнитопорошкового метода контроля, включают в себя источник тока, устройство для подвода тока к детали, блок полюсного намагничивания (соленоиды, электромагниты), устройство для нанесения на контролируемое сварное соединение порошка или суспензии и измеритель тока (или напряженности поля). В дефектоскопах чаще всего используют циркулярный способ намагничивания, пропуская переменный ток по детали (или через стержень), и продольное намагничивание постоянным током. Для магнитопорошкового контроля обычно применяют дефектоскопы трех видов: стационарные универсальные и специализированные — передвижные и переносные.

Стационарные универсальные дефектоскопы широко используются при крупносерийном производстве разнотипных деталей. С их помощью можно контролировать детали (или партии деталей) разной конфигурации с производительностью от десятков до сотен штук в час.

В стационарных универсальных дефектоскопах можно производить намагничивание всеми известными способами (продольным, циркулярным, комбинированным). Успешно применяются несколько моделей стационарных дефектоскопов: УМДЭ-2500, ХМД-10П, МД-5 и другие, отличающиеся друг от друга родом намагничивающего тока и мощностью и предназначенные для контроля деталей разных размеров.

Из специализированных передвижных и переносных дефектоскопов серийно выпускаются модели ПМД-70 и МД-50П. Переносной магнитный дефектоскоп ПМД-70 используется для контроля сварных швов в полевых условиях. В нем реализованы полюсной продольный и циркулярный способы намагничивания. Передвижной дефектоскоп МД-50П предназначен для контроля крупногабаритных массивных конструкций, выполняемого по частям.

В качестве материала для приготовления ферромагнитных порошков в основном используют оксиды железа мелкого помола (с размером частиц 5 … 20 мкм), иногда — чистую железную окалину, получаемую при ковке и прокатке, а также стальные опилки, образующиеся при шлифовании стальных изделий. Для лучшего выявления дефектов конструкций применяют цветные ферромагнитные порошки (красный, серебристый и др.), получаемые окрашиванием темных порошков или отжигом их по специальной технологии.

Для приготовления магнитных суспензий чаще всего используются масляно-керосиновые смеси (с соотношением масла и керосина 1 : 1), на 1 л которых приходится 50 … 60 г ферромагнитного порошка. Могут применяться и водные суспензии, например мыльно-водная, в которой на 1 л воды приходится 5 … 6 г мыла, 1 г жидкого стекла и 25 … 30 г магнитного порошка.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]