Цинк используется во всех сферах жизни
Удельная теплоемкость цинка имеет огромное значение для материаловедения и металлургии. Значения этой величины в целом для простых и сложных веществ, а также для различных материалов очень часто используются в жизни, промышленности и науке. Без ее учета невозможно рассчитать энергетические затраты для любого вида производства.
Цинк — это металл, влияние которого на все сферы жизни человека трудно переоценить. Без цинка не существует латунь, которую (хотя это и сплав) называют вечным металлом за ее превосходную износостойкость. Латунь находит применение от авиа— и судостроения до полиграфии и ювелирного дела.
При борьбе с коррозией металлов и сплавов цинк занимает первое место. Оцинковка — это дешевый и надежный способ придания материалам антикоррозионных свойств. Различные элементы питания, без которых не обходится жизнь современного человека, делают на основе цинка. Даже организм человека без цинка существовать не может. Это самый распространенный биологически активный микроэлемент после железа. Его нехватка ведет к негативным последствиям для здоровья.
Свойства цинка
Химические свойства цинка
Цинк — активный металл. При комнатной температуре тускнеет и покрывается слоем оксида цинка.
- Вступает в реакцию со многими неметаллами: фосфором, серой, кислородом.
- При повышении температуры взаимодействует с водой и сероводородом, выделяя водород.
- При сплавлении с щелочами образует цинкаты — соли цинковой кислоты.
- Реагирует с серной кислотой, образуя различные вещества в зависимости от концентрации кислоты.
- При сильном нагревании вступает в реакции со многими газами: газообразным хлором, фтором, йодом.
- Не реагирует с азотом, углеродом и водородом.
Физические свойства цинка
Цинк — твердый металл, но становится пластичным при 100–150 °C. При температуре выше 210 °С может деформироваться. Температура плавления — очень низкая для металлов. Несмотря на это, цинк имеет хорошую электропроводность.
- Плотность — 7,133 г/см³.
- Теплопроводность — 116 Вт/(м·К).
- Температура плавления цинка — 419,6 °C.
- Температура кипения — 906,2 °C.
- Удельная теплота испарения — 114,8 кДж/моль.
- Удельная теплота плавления — 7,28 кДж/моль.
- Удельная магнитная восприимчивость — 0,175·10-6.
- Предел прочности при растяжении — 200–250 Мн/м2.
Подробный химический состав цинка различных марок указан в таблице ниже.
Обозначение марок | Цинк, не менее | Примесь, не более | |||||||
свинец | кадмий | железо | медь | олово | мышьяк | алюминий | всего | ||
ЦВ00 | 99,997 | 0,00001 | 0,002 | 0,00001 | 0,00001 | 0,00001 | 0,0005 | 0,00001 | 0,003 |
ЦВ0 | 99,995 | 0,003 | 0,002 | 0,002 | 0,001 | 0,001 | 0,0005 | 0,005 | 0,005 |
ЦВ | 99,99 | 0,005* | 0,002 | 0,003 | 0,001 | 0,001 | 0,0005 | 0,005 | 0,01 |
Ц0А | 99,98 | 0,01 | 0,003 | 0,003 | 0,001 | 0,001 | 0,0005 | 0,005 | 0,02 |
Ц0 | 99,975 | 0,013 | 0,004 | 0,005 | 0,001 | 0,001 | 0,0005 | 0,005 | 0,025 |
Ц1 | 99,95 | 0,02 | 0,01 | 0,01 | 0,002 | 0,001 | 0,0005 | 0,005 | 0,05 |
Ц2 | 98,7 | 1,0 | 0,2 | 0,05 | 0,005 | 0,002 | 0,01 | 0,010** | 1,3 |
Ц3 | 97,5 | 2,0 | 0,2 | 0,1 | 0,05 | 0,005 | 0,01 | — | 2,5 |
* В цинке, применяемом для производства сплава марки ЦАМ4-1о, массовая доля свинца должна быть не более 0,004%. ** В цинке, применяемом для проката, массовая доля алюминия должна быть не более 0,005%. |
Содержание примесей в цинке зависит от способа производства и качества сырья.
В России основной процент цинка получают гидрометаллургическим способом — металл восстанавливают из солей в растворах. Такой способ позволяет получить наиболее чистый металл. Но часть цинка обрабатывают при высоких температурах. Такой метод называют пирометаллургическим.
Свинец — особая примесь в цинке, так как основная его часть оседает из-за нерастворимых анодов, содержащихся в металле. Катодный цинк, помимо всех указанных примесей, состоит из хлора и фтора.
Что такое удельная теплоемкость?
Тепловые явления изучаются двумя науками — термодинамикой и молекулярной физикой. У этих наук разные предметы изучения, подходы и методы, но именно накопленные знания этих дисциплин позволяют составить истинное представление о тепловых явлениях.
Теплоемкость в случае обеих наук выступает как ключевое понятие. Величина обозначается латинской буквой C. В широком смысле теплоемкость рассматривают как физическое свойство вещества или материала поглощать строго определенное количество теплоты при нагревании и выделять его при обратном процессе охлаждения.
Любая удельная величина определяется как отношение, которое реализуется к другим абсолютно разным величинам, взятым за единицу. Например, к энергии, массе или объему.
- В удельной теплоемкости отношение задается к произведению массы и температуры. Формула для расчета удельной теплоемкости выглядит так: C = Q/m*(T2 – T1), где Q – количество теплоты в Дж, m – масса вещества в кг, (T2 – T1) — разница между конечной (T2) и начальной (T1) температурами вещества в градусах Кельвина.
- Таким образом, в международной системе единиц (СИ) удельная теплоемкость измеряется в Дж/(кг.К). Ее физический смысл можно определить вопросом о том, сколько теплоты потребуется, чтобы нагреть 1 кг данного вещества на 1°K.
- Логично, что при охлаждении 1 кг вещества на 1°(по шкале Кельвина или Цельсия — не имеет значения, так как величина равна 1) в окружающую среду выделится теплота в таком же количестве, которое ушло на нагревание, а величина приобретет отрицательное значение.
Как примеси изменяют свойства цинка
Производители ограничивают содержание кадмия, олова и свинца в литейных сплавах цинка, чтобы подавить межкристаллитную коррозию.
Олово — вредная примесь. Металл не растворяется и выделяется из расплава — способствует ломкости цинковых отливок. Кадмий напротив — растворяется в цинке и снижает его пластичность в горячем состоянии. Свинец увеличивает растворимость металла в кислотной среде.
Железо повышает твердость цинка, но снижает его прочность. Вместе с тем оно усложняет процесс заполнения форм при литье.
Медь увеличивает твердость цинка, но уменьшает его пластичность и стойкость при коррозии. Содержание меди также мешает рекристаллизации цинка.
Наиболее вредная примесь — мышьяк. Даже при небольшом ее количестве металл становится хрупким и менее пластичным.
Чтобы избежать растрескивания кромок при горячей прокатке цинка, содержание сурьмы не должна быть выше 0,01%. В горячем состоянии она увеличивает твердость цинка, лишая его хорошей пластичности.
Цинк
СВОЙСТВА И ПРИМЕНЕНИЕ ЦИНКА
Цинк (Zn) — металл голубовато-белого цвета, блестящий в изломе. Название элемента происходит от латинского слова «цинк» — бельмо, белый валет — характерная окраска его соединений. Цинк относительно мягкий металл — он мягче олова, но тверже свинца. В холодном состоянии он хрупок, но при нагревании до 100—150°С делается пластичным и его можно прокатывать в тонкие листы или протянуть в проволоку. Пластичность литого цинка после деформации значительно увеличивается. Цинк и его сплавы имеют низкий предел ползучести и значительно изменяют свои свойства и размеры при естественном старении. Электропроводность цинка равна примерно 28%, а теплопроводность 24% от соответствующих показателей серебра. Основные (физические и механические свойства цинка) приведены ниже:
Атомная масса | 65,37 |
Плотность при 20°С, г/см3 | 7,13 |
Температура, °С | |
плавления | 419,5 |
кипения | 907 |
Удельная теплота плавления, кал/г | 27,03 |
Удельная теплоемкость при 18°С, кал/(г·град) | 0,1275 |
Теплопроводность при 20°С, кал/(см·сек·град) | 0,268 |
Удельное электросопротивление при 20°С, ом· мм2/м | 0,063 |
Модуль нормальной упругости, кГ/мм2 | 800-1300 |
Модуль сдвига, кГ/мм2 | 800 |
Предел текучести цинка, кГ/мм2 | |
литого | 7,5 |
деформированного | 8-10 |
Временное сопротивление цинка, кГ/мм2 | |
литого | 12-14 |
деформированного | 12-17 |
отожженного | 7-10 |
Относительное удлинение цинка, % | |
литого | 0,3-0,5 |
деформированного | 42-50 |
отожженного | 10-20 |
Твердость НВ цинка, кГ/мм2 | 30-40 |
Ударная вязкость , кГ/мм2 | 0,6-0,75 |
В сухом воздухе цинк не подвергается коррозии. В воде, содержащей углекислый газ, и во влажном воздухе он покрывается тонкой плотной пленкой основного карбоната, которая защищает его от дальнейшей коррозии. Пары воды и углекислый газ окисляют цинк. Цинк растворяется в щелочах с образованием цинкатов и в кислотах с образованием соответствующих солей. Чистый цинк почти не растворяется в серной кислоте. При 500°С цинк горит с образованием порошка окиси цинка белого цвета. При нагревании окись цинка переходит в кристаллическую форму лимонно-желтого цвета. Это вещество при нагревании до 1100°С и выше возгоняется. Окись цинка хорошо растворяется в разбавленной серной кислоте. Со многими металлами цинк образует сплавы, в том числе с железом, никелем, медью, алюминием, серебром, золотом, висмутом и др.
Окись цинка — вещество неплавкое: при нагревании выше 1800°С она испаряется без плавления. Температура начала восстановления цинка из окиси углеродом около 950°С. Сульфид цинка ZnS также неплавок и при температурах выше 1180°С обладает летучестью.
Основное количество производимого цинка расходуется в качестве защитного покрытия на изделиях из железа и стали, а также на производство сплавов: с медью (латуни), с медью и алюминием ((алюминиевая бронза), с никелем и медью ((нейзильбер и мельхиор) и др. Цинк входит также в состав подшипниковых сплавов.
Способность цинка давать сплавы с серебром и золотом используют в металлургии для извлечения благородных металлов. Цинковую пыль применяют для осаждения золота и серебра из растворов при их получении гидрометаллургическим способом, а также в химической промышленности и для очистки от меди и кадмия растворов цинка перед их электролизом.
Листовой цинк применяют в производстве аккумуляторов, для изготовления резервуаров и обшивки подводной части морских судов. Мелкие детали из цинка, отлитые под давлением, применяют в машиностроении. Окись цинка используют для изготовления белой краски (цинковых белил), а также в качестве добавок при изготовлении автомобильных шин, глазури и стекла, линолеума, клеенки и целлулоида.
Для защиты древесины от гниения служит раствор хлористого цинка. Сульфат цинка применяют в качестве реагента при флотации руд, в производстве клея, спичек и искусственного волокна. Соединения цинка находят применение в медицине.
Деформированные полуфабрикаты из цинка (листы, ленты) имеют различные свойства вдоль и поперек проката, в частности более высокое временное сопротивление поперек проката.
Свойства цинка значительно изменяются под влиянием примесей. Свинец, висмут, сурьма, мышьяк имеют очень малую растворимость в цинке и отрицательно влияют на его технологические свойства.
Олово, находящееся в цинке, при его затвердевании выделяется в виде эвтектики, плавящейся при температуре 199°C. Если в цинке одновременно присутствуют олово и свинец, образуется тройная эвтектика с температурой плавления 150°С. Располагаясь по границам кристаллитов, эвтектика нарушает их связь, а при горячей обработке давлением такой сплав легко разрушается.
Железо повышает твердость и хрупкость цинка. При содержании железа в цинке выше 0,2% прокатка цинка затрудняется из-за его повышенной хрупкости.
Алюминий, магний и медь положительно влияют на свойства цинка. При повышенном содержании свинца, олова, кадмия или магния скорость коррозии цинка возрастает, особенно под действием горячей воды или пара. В контакте с более электроположительными металлами скорость коррозии цинка резко возрастает. В связи с этим цинк применяют в качестве протектора для всех более благородных металлов, за исключением свинца.
Под действием органических кислот, например кислых пищевых (продуктов, цинк образует токсичные соли, (поэтому его не следует применять в пищевой промышленности. На цинк не действуют органические нейтральные соли.
Сплавы цинка
Сплавы на цинковой основе с добавлением меди, магния и алюминия имеют низкую температуру плавления и обладают хорошей текучестью. Они легко поддаются обработке, свариванию и паянию.
Латунь
Различают латуни двухкомпонентные и многокомпонентные.
Двухкомпонентная латунь — сплав цинка с высоким содержанием меди. Существует желтая латунь с медью в количестве 67%, золотистая медь или томпак — 75%, и зеленая — 60%. Такие сплавы могут деформироваться при температуре 300 °C.
Многокомпонентные латуни, помимо 2-х основных металлов, состоят из других добавок: никеля, железа, свинца или марганца. Каждый из элементов влияет на свойства сплава.
ЦАМ
ЦАМ — семейство цинковых сплавов. В их состав входят магний, алюминий и медь. Такие сплавы цинка используются в литейном производстве. В них содержится алюминий в количестве 4%.
Основная область применения сплавов ЦАМ — литье цинка под давлением. Сплавы этого семейства обладают низкой температурой плавления и хорошими литейными свойствами. Их высокопрочность позволяет производить прочные и сложные детали.
Вирениум
Сплав состоит из цинка (24,5%), меди (70%), никеля (5,5%).
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Производств цинка
Добыча металла
Цинк как самородный металл в природе не встречается. Добывается из полиметаллических руд, содержащих 1–4% металла в виде сульфида, а также меди, свинца, золота, серебра, висмута и кадмия. Руды обогащаются селективной флотацией и получаются цинковые концентраты (50–60% Zn).
Концентраты цинка обжигают в печах. Сульфид цинка переводится в оксид ZnO. При этом выделяется сернистый газ SO2, который используется в производстве серной кислоты.
Получение металла
Существуют два способа получения чистого цинка из оксида ZnO.
Самый древний метод — дистилляционный. Обожженный концентрированный состав подвергают термообработке, чтобы придать ему зернистость и газопроницаемость.
Затем концентрат восстанавливают коксом или углем при температуре 1200–1300 °C. В процессе образуются пары металла, которые конденсируют и разливают в изложницы. Жидкий металл отстаивают от железа и свинца при температуре 500 °C. Так достигается цинк чистотой 98,7%.
Иногда используется сложная и дорогая обработка цинка ректификацией — разделением смесей за счет обмена теплом между паром и жидкостью. Такая чистка позволяет получить металл чистотой 99,995% и извлечь кадмий.
Второй метод производства цинка — электролитический. Обожженный концентрат обрабатывается серной кислотой. Готовый сульфатный раствор очищается от примесей, после чего подвергается электролизу в свинцовых ваннах. Цинк дает осадок на алюминиевых катодах. Полученный металл удаляют с ванн и плавят в индукционных печах. После этого получается электролитный цинк чистотой 99,95%.
Литье металла
Горячий цинк — жидкий и текучий металл. Благодаря таким свойствам он легко заполняется в литейные формы.
Примеси влияют на величину натяжения поверхности цинка. Технологические свойства металла можно улучшить, добавив небольшое количество лития, магния, олова, кальция, свинца или висмута.
Чем выше температура перегрева цинка, тем лучше он заполняет формы. При литье металла в чугунные изложницы его объем уменьшается на 1,6%. Это затрудняет получение крупных и длинных цинковых отливок.
Применение цинка
Для защиты металлов от коррозии
Чистый цинк используется для защиты металлов от коррозии. Основу покрывают тонкой пленкой. Этот процесс называется металлизацией.
В автомобильной отрасли
Сплавы на цинковой основе используют для оформления декора автомобильного салона, в производстве ручек дверей, замков, зеркал и корпусов стеклоочистителей.
В автомобильные покрышки добавляют окись цинка, которая повышает качество резины.
В батарейках, аккумуляторах и других химических источниках тока цинк используется как материал для отрицательного электрода. В производстве электромобилей применяются цинк-воздушные аккумуляторы, которые обладают высокой удельной энергоемкостью.
В производстве ювелирных украшений
Ювелиры добавляют цинк в сплавы на основе золота. В итоге они легко поддаются ковке и становятся пластичными — прочно соединяют мелкие детали изделия между собой.
Металл также осветляет ювелирные изделия, поэтому его часто используют в изготовлении белого золота.
Удельная теплоемкость цинка
Поскольку сама теплоемкость находится в прямой зависимости от температуры, то и удельная теплоёмкость веществ будет меняться от значений данного параметра. В температурном диапазоне от 0 до 300°C удельная теплоемкость цинка приблизительно равна 400 Дж/кг.°C.
Плавление цинка
- Для сравнения можно привести значение этого показателя для воды при температуре 20°C, которое соответствует 4182 Дж/кг.К.
- У воды самая высокая удельная теплоемкость среди жидкостей и твердых веществ.
- В потребительском смысле это означает, что вода медленно нагревается и также медленно остывает.
В процессе нагревания воды нужно затратить большое количество энергии, поэтому вода — самый распространенный промышленный охладитель. Соответственно, при своем остывании вода отдает в окружающую среду значительное количество тепловой энергии. Это универсальный теплоноситель для различных нужд.
Удельная теплоемкость цинка примерно в 10 раз меньше, чем у воды. Металл быстро нагревается и для этого требуется в разы меньшее количество теплоты.
Зависимость удельной теплоемкости цинка от температуры является типичной для простых металлов. В процессе нагревания значение величины возрастает. Такое увеличение незначительно и носит нелинейный характер. При достижении металлом температуры плавления, когда он переходит в жидкое состояние, его удельная теплоемкость достигает максимума и остается практически неизменной.