Керосин, виды, химический состав, свойства и применение

Керосин представляет собой горючую фракцию нефти, прозрачную жидкость с маслянистой структурой и светло-желтым цветом. Жидкие горючие углероды из которых он состоит, отличаются очень высокой температурой возникновения кипения, от +150°С до +250°С. Характеристики и горючие свойства данного нефтепродукта позволяют пользоваться им для заправки авиа и автотехники, приборов используемых для освещения, примусов.

Древнегреческое слово «Кηρóς», обозначающее воск, дало название керосину.

Керосин, виды, химический состав, свойства и применение.

Керосин – это горючая жидкость, горючее топливо. Представляет собой горючую смесь жидких углеводородов (от C8 до C15) с температурой кипения в интервале 150-250 °C, получаемая путём прямой перегонки или ректификации нефти.

Керосин, как топливо

Физические свойства керосина

Типы, виды и марки керосина

Химический (компонентный, углеводородный и элементный) состав керосина

Получение керосина

Применение керосина

Другие виды топлива: биодизель, биотопливо, газойль, горючие сланцы, керосин, лигроин, мазут, нефть, попутный нефтяной газ, природный газ, свалочный газ, сланцевая нефть, сланцевый газ, синтез-газ

Лампа «Летучая мышь»

Чтобы защитить пламя от ветра выпускались специальные модели – фонари “Летучая мышь”.

Это популярное название пошло от немецкой фирмы FlederMaus, которая в 19-ом веке и наладила производство ветроустойчивых фонарей.

Данное название прочно прижилось в обиходе. Это как с примусом (Primus – в первую очередь фирма, а не изделие) или Ксероксом (Xerox).

Хотя поначалу было и альтернативное наименование такой продукции – штормовая лампа.

Среди фирменных производителей керосиновых ламп сейчас наиболее популярны Petromax и Feuerhand Baby Special.

Керосинка в защитном исполнении способна безотказно работать при силе ветра до 15м/с!

Нужно заметить, что это очень сильный порывистый ветер. Если у вас на крыльце есть плохо закреплённый электрический фонарь, то такие порывы вполне могут стряхнуть и вывести из строя даже современную лампочку накаливания.

А керосинка тем временем будет гореть!

Особую страничку в истории керосиновые лампы заняли в период Великой Отечественной войны. На фронте, понятное дело, не было никакого электричества.

А между тем, блиндажи, штабы, медсанбаты требовалось чем-то освещать. В связи с чем, ряд заводов в кратчайшие сроки переоборудовали на массовый выпуск подобных изделий.

Даже сегодня на военных складах хранится запас керосиновых ламп.

Керосин, как топливо:

Керосин (англ. kerosene от др.-греч. κηρός – «воск») – горючая смесь жидких углеводородов (от C8 до C15) с температурой кипения в интервале 150-250 °C, получаемая путём прямой перегонки или ректификации нефти.

Внешне керосин – это прозрачная, бесцветная (или слегка желтоватая, или светло-коричневая), слегка маслянистая на ощупь жидкость. Имеет характерный запах нефтепродуктов.

Керосин – горючая, легковоспламеняющаяся жидкость. Относится к малоопасным веществам и по степени воздействия на организм человека в соответствии с ГОСТ 12.1.007 относятся к 4-му классу опасности. Горючее топливо.

Керосин легче воды. В воде не растворяется.

С воздухом керосин образуют взрывоопасные смеси.

Бензин

Топливо наиболее популярно, особенно среди владельцев легковых машин. Оно состоит из смеси углеводородов, азота, серы, кислорода. Есть разные марки бензина. В каждой из них перечисленных компонентов больше либо менее. Из-за этого эксплуатационные качества отличаются.

Температура испарения

Термином называют тепловой порог, пройдя который, бензин самопроизвольно смешивается с воздухом. Ее нельзя определить, используя одну цифру.

Эта величина зависит от таких факторов:

  • давления насыщенных паров;
  • фракционного состава;
  • вязкости поверхности натяжения;
  • плотности;
  • теплоемкости.

Температура испарения бензина разного состава не слишком отличается между собой. Это происходит при 30°С, а если фракции тяжелые – 205°С. Когда на улице холодно, бензину, чтобы попасть в камеру сгорания и запустить двигатель, понадобиться затратить больше энергии.

Температура кипения

Молодые автолюбители не знают, что в жару при закипании топлива в карбюраторе машина могла стать обездвиженной. В системе горючее делались пробки из-за перегрева легких фракций. Они отсоединялись от тяжелых, став газовыми пузырями. Транспортному средству нужно было остыть, а потом продолжать поездку.

Температура вспышки

Собственная формула у нефтепродукта отсутствует. В него входит множество компонентов. Бензин способен воспламеняться при -40 °C, если произойдет возникновение открытого огня.

Температура горения

Октановое число на нее не влияет. От него зависит только устойчивость к детонации. У популярных марок бензина характеристики практически одинаковы. В двигателе температура 900-1100 °C, может быть и ниже. На это влияет давление цилиндров. Что касается открытого огня, то для бензина это – 800-900 °C.

Физические свойства керосина:

Наименование параметра:Значение:
Плотность керосина при 20 оС, г/см3 (зависит от углеводородного состава, вида и сорта керосина)*от 0,78 до 0,85
Плотность керосина при 20 оС, кг/м3 (зависит от углеводородного состава, вида и сорта керосина)*от 780 до 850
Температура плавления/замерзания (зависит от углеводородного состава и вида керосина), оСот -60 °С до -40 °С
Температура кипения (зависит от углеводородного состава и вида керосина), оСот +150°C до +250°C
Кинематическая вязкость при 20 оС (зависит от углеводородного состава, вида и сорта керосина), мм²/сот 1,2 до 4,5 %
Температура вспышки** (зависит от углеводородного состава, вида и сорта керосина), оСот +28 °С до +72 °С
Температура воспламенения** (зависит от углеводородного состава, вида и сорта керосина), оСот -10 °С до +105 °С
Температура самовоспламенения (зависит от углеводородного состава, вида и сорта керосина), оС220 °С
Взрывоопасные концентрации смеси керосина с воздухом (зависят от углеводородного состава, вида и сорта керосина), % объёмныхот 0,6 до 8,0
Удельная теплота сгорания керосина (зависит от углеводородного состава, вида и сорта керосина), мДж/кгот 42,9 до 46,2
Содержание серы (зависит от углеводородного состава, вида и сорта керосина), %%не более 1,0

Примечание:

* с повышением температуры плотность керосина уменьшается.

** температура воспламенения – это температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение;

** температура вспышки – температура, при которой пары нефтепродукта образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней огня.

Температура открытого огня: температурный режим огня в зажигалке, влияющие факторы и классификация

Пламя — это явление, которое вызвано свечением газообразной раскалённой среды. В некоторых случаях оно содержит твёрдые диспергированные вещества и (или) плазму, в которых происходят превращения реагентов физико-химического характера. Именно они и приводят к саморазогреву, тепловыделению и свечению.

В газообразной среде пламени содержатся заряженные частицы — радикалы и ионы. Это объясняет существование электропроводности пламени и его взаимодействие с электромагнитными полями.

На таком принципе построены приборы, которые могут приглушить огонь, изменить его форму или оторвать его от горючих материалов при помощи электромагнитного излучения.

Свечение огня делится на два вида:

  • несветящиеся;
  • светящиеся.

Почти каждое свечение видимо для человеческого глаза, но не каждое способно испускать нужное количество светового потока.

Свечение пламени обуславливается следующими факторами.

  1. Температурой.
  2. Плотностью и давлением газов, которые участвуют в реакции.
  3. Наличием твёрдого вещества.

Наиболее общая причина свечения — это присутствие в пламени твёрдого вещества.

Многие газы горят слабо светящимся или несветящимся пламенем.

Из них наиболее распространены сероводород (пламя голубого цвета как при горении), аммиак (бледно-жёлтое), метан, окись углерода (пламя бледно-голубого цвета), водород.

Пары летучих некоторых жидкостей горят едва светящимся пламенем (спирт и сероуглерод), а пламя ацетона и эфира становится немного коптящим из-за небольшого выделения углерода.

Температура пламени

Для разных горючих паров и газов температура пламени неодинакова. А ещё неодинакова температура разных частей пламени, а область полного сгорания имеет более высокие показатели температуры.

Некоторое количество горючего вещества при сжигании выделяет определённое количество теплоты. Если строение вещества известно, то можно рассчитать объём и состав полученных продуктов горения. А если знать удельную теплоту этих веществ, то можно рассчитать ту максимальную температуру, которую достигнет пламя.

Стоит помнить о том, что если вещество горит в воздухе, то на каждый объём вступающего в реакцию кислорода приходится четыре объёма инертного азота. А так как в пламени присутствует азот, он нагревается теплотой, которая выделяется при реакции. Исходя из этого можно сделать вывод о том, что температура пламени будет состоять из температуры продуктов горения и азота.

Невозможно точно определить температуру, но можно это сделать приблизительно, так как удельная теплота изменяется с температурой.

Вот некоторые показатели по температуре открытого огня в разных материалах.

  1. Горение магния — 2200 градусов.
  2. Горение спирта не превышает температуры 900 градусов.
  3. Горение бензина — 1300−1400 градусов.
  4. Керосина — 800, а в среде чистого кислорода — 2000 градусов.
  5. Горение пропан-бутана может достигать температуры от 800 до 1970 градусов.
  6. При сгорании дерева температурный показатель колеблется от 800 до 1000 градусов, а воспламеняется оно при 300 градусах.
  7. Температурный параметр горения спички составляет 750−850 градусов.
  8. В горящей сигарете — от 700 до 800 градусов.
  9. Большинство твёрдых материалов воспламеняется при температурном показателе в 300 градусов.

Пламя, которое каждый человек может наблюдать при горении свечи, спички или зажигалки, представляет из себя поток раскалённых газов, которые вытягиваются вертикально вверх, благодаря силе Архимеда.

Фитиль свечи вначале нагревается и начинает испаряться парафин. Для самой нижней части характерно небольшое свечение синего цвета — там мало кислорода и много топлива.

Именно из-за этого топливо не полностью сгорает и образуется оксид углерода, который при окислении на самом крае конуса пламени ему придаёт синий цвет.

За счёт диффузии в центр поступает немного больше кислорода. Там происходит последующее окисление топлива и температурный показатель растёт. Но для полного сгорания топлива этого недостаточно. Внизу и в центре содержатся частицы угля и несгоревшие капельки. Они светятся из-за сильного нагревания.

А вот испарившееся топливо, а также продукты сгорания, вода и углекислый газ практически не светятся. В самом верху наибольшая концентрация кислорода. Там не догоревшие частицы, которые в центре светились, догорают.

Именно по этой причине эта зона практически не светится, хотя там наиболее высокий температурный показатель.

Классификация пламени

Классифицируют свечение огня следующим образом.

  1. По восприятию визуальному: цветные, прозрачные, коптящие.
  2. По высоте: короткие и длинные.
  3. По скорости распространения: быстрые и медленные.
  4. По температурному показателю: высокотемпературные, низкотемпературные, холодные.
  5. По характеру перемещения среды реакционной: пульсирующие, турбулентные, ламинарные.
  6. По состоянию горючей среды: предварительно перемешанные и диффузионные.
  7. По излучению: бесцветные, окрашенные, светящиеся.
  8. По агрегатному состоянию горючих веществ: пламя аэродисперсных и твёрдых реагентов, жидких и газообразных.

В диффузном ламинарном пламени выделяют три оболочки (зоны). Внутри конуса пламени существует:

  • зона тёмная, где нет горения из-за малого количества окислителя — 300−350 градусов;
  • зона светящаяся, где осуществляется термическое разложение горючего и оно сгорает частично — 500−800 градусов;
  • зона слегка светящаяся, где окончательно сгорают продукты разложения горючего и достигается максимальный температурный показатель в 900−1500 градусов.

Температурный параметр пламени зависит от интенсивности подвода окислителя и природы горючего вещества. Пламя распространяется по предварительно перемешанной среде. Происходит распространение по нормали от каждой точки фронта к поверхности пламени.

По реально существующим смесям газовоздушным распространение всегда осложнено возмущающими внешними воздействиями, которые обусловлены трением, конвективными потоками, силами тяжести и прочими факторами.

Именно из-за этого реальная скорость распространения от нормальной всегда отличается. В зависимости от того, какой характер носит скорость распространения, различают такие диапазоны:

  1. При горении детонационном — более 1000 метров в секунду.
  2. При взрывном — 300−1000.
  3. При дефлаграционном — до 100.

Оно располагается в самой верхней части огня, которая имеет наибольший температурный показатель. В этой зоне горючие вещества почти полностью превращены в продукты горения. Здесь наблюдается недостаток топлива и избыток кислорода. Именно по этой причине вещества, которые помещены в эту зону, окисляются интенсивно.

Пламя восстановительное

Эта часть наиболее близка к центру или находится чуть ниже его. Здесь мало кислорода для горения и много топлива. Если в эту область внести вещество, в котором имеется кислород, то он отнимется у вещества.

Температура огня в зажигалке

Зажигалка — это устройство портативное, которое предназначено для получения огня. Она может быть бензиново или газовой, в зависимости от применяемого топлива. Ещё существуют зажигалки, в которых собственного топлива нет. Они предназначаются для поджига газовой плиты. Качественная турбозажигалка — это прибор относительно сложный. Температура огня в ней может достигать 1300 градусов.

Химический состав и цвет пламени

У карманных зажигалок небольшой размер, это позволяет их переносить без каких-либо проблем. Довольно редко можно встретить настольную зажигалку. Ведь они из-за своих больших размеров для переноски не предназначены. Их дизайн разнообразен. Есть зажигалки каминные. Они имеют небольшую толщину и ширину, но довольно длинные.

На сегодняшний день становятся популярными рекламные зажигалки. Если в доме нет электроэнергии, то невозможно ей поджечь газовую плиту. Газ поджигает образующаяся электрическая дуга. Достоинствами этих зажигалок являются следующие качества.

  1. Долговечность и простота конструкции.
  2. Быстрое и надёжное зажигание газа.

Первая зажигалка с современным кремнём создана в Австрии в 1903 году после изобретения ферроцериевого сплава бароном Карлом Ауэром фон Вельсбахом.

Ускорилось развитие зажигалок в период Первой мировой войны. Солдаты начали применять спички для того, чтобы видеть в темноте дорогу, но их местоположение выдавала интенсивная вспышка при поджиге. Необходимость в огне без значительной вспышки способствовало развитию зажигалок.

В то время лидерами производства зажигалок «кремнёвых» были Германия и Австрия. Такое портативное устройство, которое предназначено для получения огня, находящиеся в кармане многих курильщиков, при неправильном обращении может таить в себе немало опасностей.

Зажигалка в период работы не должна вокруг себя разбрызгивать искры. Огонь должен быть стабильным и ровным. Температура огня в зажигалках карманных достигает примерно 800−1000 градусов. Свечение красного или оранжевого цвета вызвано частицами углерода, которые раскалились.

Для бытовых горелок и турбозажигалок применяется в основном газ бутан, который легко сжигается, не имеет запаха и цвета. Бутан получают путём переработки при высоких температурах нефти, а также её фракций.

Бутан — это легковоспламенимые углеводороды, но он абсолютно безопасен в конструкциях современных зажигалок.

Подобные зажигалки в быту очень полезны. Ими можно поджечь любой воспламеняющийся материал. В комплект турбозажигалок входит настольная подставка.

Цвет пламени зависит от горючего материала и температуры горения. Пламя костра или камина в основном имеет пёстрый вид. Температура горения дерева ниже температуры горения фитиля свечи.

Именно из-за этого цвет костра не жёлтый, а оранжевый.

Медь, натрий и кальций при высоких температурных показателях светятся различными цветами.

Электрическая зажигалка была изобретена в 1770 году. В ней водородная струя воспламенялась от искры машины электрофорной. Со временем бензиновые зажигалки уступили место газовым, которые более удобные. В них обязательно должна находиться батарейка — источник энергии.

Не очень давно появились зажигалки сенсорные, в которых без механического воздействия происходит зажигание газа воздействием на сенсорный датчик. Сенсорные зажигалки карманного типа. В основном, в них содержится информация рекламного типа, которая нанесена при помощи тампонной или шелкотрафаретной печати.

Типы, виды и марки керосина:

Различают следующие виды керосина: авиационный керосин (авиакеросин), ракетный керосин, технический керосин и осветительный керосин.

Авиационный керосин – это моторное топливо для турбовинтовых и турбореактивных двигателей различных летательных аппаратов, а также применяется как хладагент в различных теплообменниках (топливно-воздушных радиаторах), в качестве смазки движущихся деталей топливных и двигательных систем, в качестве растворителя.

В России для дозвуковой авиации производится пять марок авиационного керосина (ТС-1, Т-1, Т-1С, Т-2 и РТ), для сверхзвуковой – две (Т-6 и Т-8В). Авиационный керосин марки РТ является унифицированным топливом и предназначен для применения на летательных аппаратах как с дозвуковой, так и сверхзвуковой скоростью полета.

Ракетный керосин – это реактивное топливо, используемое в воздушно-реактивных двигателях ракетной техники. Он также является рабочим телом механизма двигателя.

Технический керосин используют как сырьё для пиролитического получения этилена, пропилена и ароматических углеводородов, в качестве топлива в основном при обжиге стеклянных и фарфоровых изделий, как растворитель при промывке механизмов и деталей.

Производятся две марки технического керосина: КТ-1 и КТ-2.

Осветительный керосин – специальный вид керосина, предназначенный для заправки ламп и нагревательных приборов. Он также применяется для обезжиривания металлопроката и запчастей, промывки механизмов и деталей.

В России производятся четыре марки осветительного керосина: КО-20, КО-22, КО-25, КО-30.

Присадки

Антистатическая Многолетним опытом эксплуатации отечественного и зарубежного воздушного транспорта доказано, что при перекачке топлив или при заправке самолетов возможно накопление статического электричества. Из-за непредсказуемости процесса в любой момент существует опасность взрыва. Для борьбы с этим опасным явлением в топлива добавляют антистатические присадки. Они увеличивают электропроводность топлива до 50 пСм/м, что обеспечивает безопасность заправки самолетов и перекачки топлива. За рубежом используют присадки ASA-3 (Shell) и Стадис-450 (Dupount). В России получила распространение присадка Сигбол (ТУ 38.101741-78), допущенная к добавлению в топлива ТС-1, Т-2, РТ и Т-6 в количестве до 0,0005 %. Добавляется при производстве. Противоводокристаллизационная При заправке топливом с температурой -5…+17 °C за 5 часов полета температура в баке снижается до -35 °C. Рекорд падения температуры — -42 °C (ТУ-154) и -45 °C (баки, питающие крайние двигатели ИЛ-62М). При этих температурах из топлива выпадают кристаллы льда, забивающие топливные фильтры, что может привести к прекращению подачи топлива и остановке двигателя. Уже при содержании воды 0,002 % (масс.) начинают забиваться самолетные фильтры с диаметром пор 12-16 мкм. Для предотвращения выпадения кристаллов льда из топлива при низких температурах в топливо вводят противоводокристаллизационные присадки непосредственно в месте заправки самолета. В качестве таких присадок широко используют этилцеллозольв (жидкость И) по ГОСТ 8313-88, тетрагидрофуран (ТГФ)по ГОСТ 17477-86 и их 50%-е смеси с метанолом (присадки И-М, ТГФ-М). Присадки могут добавляться практически в любое топливо.Добавляется на месте эксплуатации. Антиокислительная Вводятся в гидроочищенные топлива (РТ, Т-6, Т-8В) для компенсации сниженной в результате гидроочистки химической стабильности. В России применяют присадку Агидол-1 (2,6-ди-трет-бутил-4-метилфенол) по ТУ 38.5901237-90 в концентрации 0,003-0,004 %. В таких концентрациях он почти полностью предотвращает окисление топлив, в том числе при повышенных температурах (до 150 °C).Добавляется при производстве. Противоизносная Предназначена для восстановления противоизносных свойств топлив, потерянных в результате гидроочистки. Вводится в те же топлива, что и антиокислительная присадка. В России применяют присадку Сигбол и композицию присадок Сигбол и ПМАМ-2 (полиметакрилатного типа — ТУ 601407-69). Для топлив РТ часто используется присадка «К» (ГОСТ 13302-77), которая по эффективности соответствует присадке Сигбол, а также, ввиду дефицита присадки «К» — присадка Хайтек-580 . Добавляется при производстве.

Химический (компонентный, углеводородный и элементный) состав керосина:

Керосин по своему химическому составу представляет собой смесь различных углеводородных и неуглеводородных компонентов:

– предельных, насыщенных углеводородов (алканов) – 20-60 %,

– циклических насыщенных углеводородов (нафтенов) – 20-50 %,

– ароматических углеводородов (аренов) – 5-25 %,

– непредельных углеводородов – до 2 %,

– примесей сернистых, азотистых или кислородных соединений.

Алканы (насыщенные углеводороды, парафины) – ациклические углеводороды линейного или разветвлённого строения, содержащие только простые химические связи и образующие гомологический ряд с общей формулой CnH2n+2. Алканы являются насыщенными углеводородами, то есть содержат максимально возможное число атомов водорода для заданного числа атомов углерода.

Нафтены, также циклоалканы, полиметиленовые углеводороды, цикланы или циклопарафины – это циклические насыщенные углеводороды, по химическим свойствам близкие к предельным углеводородам. Имеют химическую формулу CnH2n и циклическое строение (т.е. замкнутые кольца из углеродных атомов).

Ароматические соединения (арены) – циклические органические соединения, которые имеют в своём составе ароматическую систему.

Непредельные углеводороды – углеводороды с открытой цепью, в молекулах которых между атомами углерода имеются двойные или тройные связи.

Сернистые соединения: сероводород H2S, меркаптаны, моно- и дисульфиды, тиофены и тиофаны, а также полициклические (гетероциклические) сернистые соединения и т.п.

Азотистые соединения: преимущественно гомологи пиридина, хинолина, индола, карбазола, пиррола, а также порфирины.

Кислородные соединения: нафтеновые кислоты, фенолы, смолисто-асфальтеновые и др. вещества.

Компонентный состав керосина зависит от химического состава и способа переработки исходного сырья – нефти, а также вида керосина.

В завершение сказанного

Все виды топлива для реактивных и турбореактивных двигателей можно грубо разделить на три основных типа: • Керосиновое: состоит преимущественно из углеводородов с числом атомов углерода в диапазоне от C9 до C16. Jet A, Jet A1, JP 8, Jet A50. • “Смешанное“: керосины смешаны с лигроинами с низкой температурой воспламенения, чтобы получить низкокипящее топливо, содержащее углеводороды с числом атомов углерода в диапазоне от C4 до C16. Jet B, JP 4. • Высокотемпературное керосиновое: смесь керосинов, имеющих минимальную температуру вспышки 60°C. В основном используется керосиновое авиационное топливо. Гражданские самолеты заправляют топливом марки ТС-1 — Россия, Jet A1 (Jet A в США/Канаде) и Jet A50, а военные самолеты – JP8. Для военных самолетов также используется “смешанное” топливо (JP4), но его применение составляет менее 1 % всего расхода керосина. JP 5 используется для самолетов военно2морской авиации. Отличие между повсеместно применяемым в России авиакеросином ТС-1 и его европейским аналогом Jet A-1 состоит в основном в технологии производства. Jet A-1 проходит гидроочистку, в его составе имеются антистатическая и стабилизирующая присадки, он менее экологически вреден, температура вспышки на 10 градусов выше. Он считается в Европе более безопасным при транспортировке и заправке самолетов. Но здесь надо отметить, что в мировой летной практике не зафиксировано ни одной аварии, связанной с техническими характеристиками керосина марки ТС-1. Более того, преимуществом российского авиатоплива является то, что он может использоваться при гораздо более низких температурах.

Сравнительная характеристика авиакеросинов ТС-1 и Jet A-1
ПараметрыТС-1Jet A-1
Кислотность, KOH мг/100 см30,70,1
Массовая доля RSH*, %0,0030,003
Массовая доля общей серы, %0,20,3
Кинематическая вязкость, мм2/cек.8,0 (-40°С)8,0 (-20°С)
Плотность, кг/м3780 (20°С)775 (15°С)
Температура вспышки, °С2838
Высота некоптящего пламени, мм2525
* RSH —содержание меркаптановых соединений серы

Сертификация В США Jet., Европа Jet A1. В Канаде Jet A (аналог Jet A-1, Jet) , Jet B (аналог ТС-1,более легкий, чем Jet A) В России ТС-1 (ГОСТ 10227-86)

Применение керосина:

Керосин применяется в качестве топлива для различных двигателей, в качестве смазки движущихся деталей, как растворитель при промывке механизмов и деталей, как средство для обезжиривания поверхности, как ценное сырье для химической промышленности, в народной медицине.

История керосиновой лампы

До второй половины 19-го века в качестве топлива в домашних светильниках использовались животные или растительные жиры. Их поджигали в масляных лампах и получали тусклый, коптящий, но все таки надежный источник света.

Керосина тогда еще не существовало. Его изобретение сразу же уменьшило образование копоти, но самое главное повысило светоотдачу и яркость.

Благодаря испарению керосина прибор стал гораздо проще. Также исчезла необходимость нагнетания топлива в лампу под давлением.

Исторически считается, что керосиновая лампа появилась в 1853 году. Австрийские аптекари в г.Львов первыми начали использовать керосин в качестве топлива.

С этим связана довольно интересная история. В те времена во Львове жил Петр Миколяш, который владел одной из городских аптек. Два коммерсанта из другого города предложили ему выгодную сделку – аптекарь покупает у них по дешевке дистиллят, а тот перегоняет его в спирт.

Навар обещали астрономический. Процессом перегонки занялся лаборант аптеки, которого звали Ян Зех. Именно он вместе со своим коллегой Игнатием Лукасевичем в погоне за прибылью начали проводить в аптеке все дни и ночи.

При этом в процессе своей работы они активно экспериментировали с нефтепродуктами. Получив некое подобие керосина, они попробовали его использовать в модернизированной масляной горелке. Результат превзошел все ожидания.

Хозяин аптеки сначала выставил экземпляр такой лампы на витрине, а уже через некоторое время ими активно начали освещать улицы Львова. Слухи об использовании революционного освещения дошли до Австрии.

Именно там фирма Рудольфа Дитмара, оформив патент, и начала массовый выпуск подобного товара для домашнего использования. Керосин с каждым годом становился все более дешевым и доступным. Его тогда еще называли угольным маслом.

Постепенно изобретение дошло и до наших просторов. Изначально все размеры стекла, фитиля к керосиновым лампам указывались в “линиях”. Традиция эта сохранилась до сих пор.

Что это такое? Одна линия – это 1/10 дюйма (10 точек), что равняется 2,54мм. Например, диаметр лампового стекла в нижней части – 20 линий (50мм).

В линиях измеряли и фитиль. Лампа с шириной фитиля в 7 линий это около 18мм. Исходя из этого размера она и получила свое название – семилинейная керосиновая лампа или семилинейка.

Чем шире фитиль, тем ярче светит лампа. Одна семилинейка при максимальной яркости эквивалента лампочке накаливания в 35Вт.

Температура вспышки

Следующая после температуры кипения керосина характеристика — температура вспышки. Это параметр, по которому определяется степень пожарной опасности данной жидкости. Тут температура вспышки керосина будет варьироваться от 28 до 60 °С.

Надо сказать, что эта характеристика строго контролируется стандартами для предотвращения попадания в топливо бензина, который способен резко повысить его огнеопасность. Практическое определение температуры реактивных вспышек керосиновой жидкости предписывается стандартами всех государств мира.

Электричество из керосиновой лампы

С появлением электричества у керосинок возник серьезный конкурент, который своим триумфальным шествием напрочь вытеснил с рынка освещения все подобные лампы одним махом. Остановить технологическую революцию было невозможно.

Однако изобретатели уже в наше время додумались до обратного процесса. Речь идет о том, что из керосиновой лампы при определенных условиях можно легко получить электричество.

Такой термогенератор выпускали в СССР после войны в 50-х годах. Назывался он ТГК-3.

Он был предназначен для питания бытовых ламповых приемников. Чаще всего использовался в отдаленных населенных пунктах в тайге и на метеостанциях.

Более подробно ознакомиться с принципом работы термоэлектрогенератора ТГК-3 можно отсюда. А вот наглядный пример работы такого аппарата вживую.

https://youtube.com/watch?v=qeUERF_P5vs

ВНП

Под этой аббревиатурой понимается высота некоптящего пламени нефтепродукта. В частности, это важная характеристика для керосина КО-25. Определяет его способность гореть в фитильной стандартной лампе (с диаметром самого фитиля 6 мм) белым равномерным пламенем без образования копоти или нагара.

Это численный показатель, измеримый в миллиметрах. Он обязательно указывается на этикетках соответствующих осветительных марок продукта. На ВНП оказывают прямое влияние химический и фракционный составы керосина.

Скорость распространения

Распространение пламени по предварительно перемешанной среде (невозмущенной), происходит от каждой точки фронта пламени по нормали к поверхности пламени. Величина такой нормальной скорости распространения пламени (далее – НСРП) является основной характеристикой горючей среды. Она представляет собой минимальную возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей – от 0,03 до 15 м/с.

Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и т.д. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения скорости распространения пламени имеют следующие диапазоны величин при:

  • дефлаграционном горении – до 100 м/с;
  • взрывном горении – от 300 до 1000 м/с;
  • детонационном горении – свыше 1000 м/с.

Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN ±n , красно-оранжевая — излучением частиц С2 ±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx ±n , H2O ±n , HO ±n , CO2 ±n , CO ±n ) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).

Источник: Тидеман Б.Е., Сциборский Д.Б. Химия горения. –Л., 1935.

Кинематическая вязкость

При характеристике керосина по ГОСТу будет актуальной и эта позиция. Надо сказать, что вязкость углеводородов, входящих в состав данного продукта существенно изменяется с понижением/повышением его температуры. Чем последняя будет выше, тем меньше становится вязкость.

Это весьма важная характеристика. Вязкость керосинов оказывает большое влияние на ряд эксплуатационных особенностей топливных систем летательных аппаратов, а также процессы сгорания и смесеобразования в двигателе.

Так, вязкость керосина при 20 °С составляет 1,2 — 4,5 мм2/с.

Последовательность определения удельной теплоты сгорания

Показатель удельной теплоты сгорания керосина устанавливает условия его воспламенения в различных устройствах – от двигателей до аппаратов керосиновой резки. В первом случае оптимальное сочетание теплофизических параметров следует определять более тщательно. Для каждой из комбинаций топлива обычно устанавливается несколько графиков. Эти графики могут быть использованы для оценки:

  1. Оптимального соотношения смеси продуктов сгорания.
  2. Адиабатической температуры пламени реакции сгорания.
  3. Средней молекулярной массы продуктов сгорания.
  4. Удельной теплоты соотношение продуктов сгорания.

Эти данные необходимы для определения скорости выхлопных газов, выбрасываемых из двигателя, что в свою очередь определяет тягу двигателя.

Оптимальное соотношение топливной смеси даёт самый высокий удельный импульс энергии и является функцией давления, при котором будет работать двигатель. Двигатель с высоким давлением в камере сгорания и низким давлением на выходе будет иметь самое высокое оптимальное соотношение смеси. В свою очередь, от оптимального соотношения смеси зависит давление в камере сгорания и энергоёмкость керосинового топлива.

В большинстве конструкций двигателей, использующих керосин в качестве топлива, большое внимание уделяется условиям адиабатического сжатия, когда давление и объём, занимаемый горючей смесью, находятся в постоянной взаимосвязи – это влияет на долговечность элементов двигателя. При этом внешний теплообмен, как известно, отсутствует, что определяет максимальный КПД.

Классификация

Пламя классифицируют по:

  • агрегатному состоянию горючих веществ: пламя газообразных, жидких, твердых и аэродисперсных реагентов;
  • излучению: светящиеся, окрашенные, бесцветные;
  • состоянию среды горючее-окислитель: диффузионные, предварительно перемешанных сред;
  • характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
  • температуре: холодные, низкотемпературные, высокотемпературные;
  • скорости распространения: медленные, быстрые;
  • высоте: короткие, длинные;
  • визуальному восприятию: коптящие, прозрачные, цветные.

В ламинарном диффузионном пламени можно выделить 3 зоны (оболочки).

Внутри конуса пламени имеются:

  • темная зона (300-350 °С), где горение не происходит из-за недостатка окислителя;
  • светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500-800 °С);
  • едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900-1500 °С).
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]