Смесь технических газов для сварочных работ на основе аргона

Сварщики часто недооценивают вклад защитной среды в процесс сварки. Некоторые чистые газы и сварочные смеси газов могут влиять на перенос металла, состав сплава, форму шва, дымообразование и множество других характеристик. Правильный выбор защитного газа для электродуговой сварки (MAG), дуговой сварки с флюсом (FCAW) и дуговой сварки вольфрамовым электродом (TIG) может существенно повысить интенсивность процесса, улучшить качество и скорость осаждения для данной сварной конструкции.

Разновидности

Взятые в установленном техническими нормативами соотношении, перечисленные выше составляющие могут образовывать следующие смеси газов:

  • аргон плюс углекислота;
  • аргон в соединении с гелием и кислородом (водородом);
  • соединение углекислоты и кислорода.

Некоторые из этих комбинаций оптимально подходят для полуавтомата, в конструкции которого уже предусмотрена возможность их эффективного использования. Однако к рассмотрению этого вопроса удобнее будет перейти после более подробного ознакомления с основными сварочными смесями.

Аргон и углекислый газ

Подготовленная в определённой пропорции эта смесь газов наиболее продуктивна при работе с углеродистыми и низколегированными сталями. При сравнении эффективности данной комбинации с аналогичными показателями сварки на чистых газах обнаруживается, что этот сварочный состав облегчает струйный перенос вещества электрода.

Кроме того, швы на готовом изделии, в отличие от сваривания на чистой углекислоте, получаются более ровными и пластичными. При работе с указанной смесью газов заметно снижается возможность образования пор.

Аргон в сочетании с кислородом


Аргонокислородная смесь очень часто требуется для эффективного сплавления легированных и низколегированных сталей. Небольшая добавка кислорода в рабочую комбинацию позволяет не только исключить образование пор, но и заметно расширить возможности сварочных процедур.

Прежде всего, это касается изменения пределов регулировки токов, а также применения более широкого набора разновидностей сварочной проволоки. Естественно, что качество образуемого при этом сварочного шва заметно возрастает, вследствие чего смеси этого состава пользуются повышенным спросом.

Углекислота и кислород

Применение этой сварочной смеси газов позволяет получить требуемый положительный эффект, проявляющийся в следующем:

  • наблюдающееся во время сварки разбрызгивание металла ощутимо снижается;
  • вследствие этого улучшается качество формируемого шва;
  • повышается температура в рабочей зоне, что определённым образом влияет на эффективность проводимых работ (их производительность резко возрастает).

Однако у этого сварочного реагента имеется один существенный недостаток, связанный с повышенным окислением металла в зоне сварки. Как следствие, заметно ухудшаются механические параметры формируемого соединения. К тому же при данном соединении образуется вредный для человека угарный газ.

Влияние сварочного газа на процесс сварки

Сварщики и специалисты в этой сфере часто упускают из виду применяемый ими защитный газ и его вклад в процесс сварки.
Защитные газы влияют на режим переноса металла, свойства и геометрию сварочного шва, задымленность и многие другие характеристики сварочного шва.

Правильный выбор защитного газа для процессов дуговой сварки металла, таких как аргонодуговая TIG сварка и полуавтоматическая сварка MIG MAG могут резко повысить скорость, качество сварки и глубину проплавления.

Чистые сварочные газы

Чистые газы, используемые для сварки, это аргон, гелий, и углекислый газ. Эти газы могут иметь как положительное, так и негативное воздействие на дуговой процесс сварки и появление дефектов в сварочном шве.

  • Аргон100% аргон обычно используются для аргонодуговой TIG сварки для всех материалов и MIG сварки цветных металлов. Аргон химически инертен, что делает его пригодным для сварки химически активных и тугоплавких металлов. Этот газ имеет низкую теплопроводность и потенциал ионизации, что приводит к низкой передаче тепла на внешнюю область сварочной дуги. В результате формируется узкий столб дуги, который в свою очередь, создает традиционный для сварки в чистом аргоне профиль сварочного шва: глубокий и относительно узкий.
  • ГелийГелий также является одноатомным инертным газом, и чаще всего используется для аргонодуговой TIG сварки цветных металлов. В отличие от аргона, гелий имеет высокую проводимость тепла и потенциал ионизации, которые дают противоположный, чем при сварке в аргоне, эффект. Гелий обеспечивает широкий профиль сварочного шва, хорошее смачивание по краю и более высокое тепловложение, чем чистый аргон.
  • Углекислый газУглекислый газ CO2 – активный газ — обычно используется для полуавтоматической MAG сварки короткой дугой и MAG сварки порошковой проволокой. CO2 является наиболее распространенным из химически активных газов, используемых в MAG сварке. И единственным газом , который можно использовать в чистом виде без добавления инертного газа. Углекислый газ является одним из самых дешевых защитных газов, что делает его привлекательным выбором, когда материальные затраты являются основным приоритетом при сварочном процессе. CO2 обеспечивает очень глубокое проплавление, что полезно для сварки толстого металла, однако, при сварке в этом газе менее стабильна сварочная дуга, что приводит к большому образованию брызг. Также его применение ограничивается сваркой на короткой дуге и делает не возможной сварку со струйным переносом.

Сварочные газы, используемые как компоненты сварочной смеси газов

  • КислородКислород — двухатомный, активный защитный газ обычно используется для MIG MAG сварки как один из компонентов сварочной смеси, в концентрации менее 10%. Кислород обеспечивает очень широкий профиль сварочного шва с неглубоким проплавлением и высокое тепловложение на поверхности металла. Кислородо-аргонные смеси обладают характерным профилем проплавления сварочного шва в виде «шляпки гвоздя». Кислород также используется в тройных смесях с СО2 и аргоном, где он обеспечивает хорошую смачиваемость и преимущества струйного переноса.
  • ВодородВодород — двухатомный, активный компонент защитного газа обычно используется в сварочной смеси в концентрации менее 10%. Водород используется главным образом при сварке аустенитной нержавеющей стали для удаления оксида и повышения тепловложения. Как и для всех газов из двухатомных молекул, результат — широкий на поверхности сварочный шов. Проплавление увеличенное. Водород не подходит для ферритных или мартенситных сталей из-за возникновения трещин. Водород может быть использован в более высокой концентрации (от 30 до 40%) для плазменной резке нержавеющей стали — для увеличения мощности и сокращения шлака.
  • АзотАзот используется реже всего для защитных целей. Он в основном используется для того, чтобы повысить коррозионную стойкость в дуплексных сталях.

Сварочные смеси газов

В зависимости от сварочного процесса и материалов для сварки используется множество различных сварочных газов и их смесей:

Сварка TIGСварка MIG MAG
Сварочный газ или смесьСтальНерж. стальАлюминийСтальНерж. стальАлюминий
Аргон (Ar)хххх
Гелий (He)х
Углекислый газ (СО2)х
Смесь Ar/ СО2хх
Смесь Ar/ О2хх
Смесь Ar/ Heхххх
Смесь Ar/ СО2/ О2х
Смесь Ar/ H2х
Смесь Ar/ He/ СО2хх
Смесь He/ Ar/ СО2х

Стоимость сварочного газа на фоне общей стоимости сварочных работ

Если посмотреть на диаграмму распределения стоимости сварочных работ, то можно увидеть, что затраты на сварочный газ составляют всего 2-5% от всех затрат на сварку. Однако недооценивать эти затраты не следует.

Выбор правильного газа и его качество значительно влияют на расход сварочных материалов, геометрию сварочного шва и на весь процесс сварки в целом. Также выбор газа влияет и на затрачиваемый труд на исправление дефектов и обработку сварочного шва после сварки.

Надеемся данная статья было полезна для вас. На этом сайте вы найдете много других интересных и полезных статей. Спасибо.

© Смарт Техникс Данная статья является авторским продуктом, любое её использование и копирование в Интернете разрешена с обязательным указанием гиперссылки на сайт www.smart2tech.ru

Особенности аргоновых и углекислотных соединений


Перед тем как определиться, какой газ использовать в смеси, надо рассмотреть особенности применения каждого их них.

Согласно ТУ 2114-001-99210100-09 все перечисленные выше составы могут формироваться в самых различных пропорциях, отличающихся процентным содержанием каждой из составляющих. В подавляющем большинстве таких пропорций аргон или кислород содержится в объёмах, составляющих основную массу вещества (от 88 до 98%). Дополняющие их добавки (углекислый газ, в частности) редко превышают в объёмном исчислении 5-15 %.

Аргон в пропорциональном соотношении с гелием чаще всего применяется с целью обработки цветных металлов и их производных. Основные типы заготовок, для обработки которых используется аргонодуговая сварка – это медные, алюминиевые, никелевые, а также хромоникелевые сплавы.

Сварочные смеси из сочетания аргона с углекислым газом нередко применяются с целью подогрева металла перед сваркой или постепенного его охлаждения по окончании работ. Как правило, такая процедура организуется в случаях крайней необходимости.

Этот газообразный состав достаточно взрывоопасен, так что работа в среде СО2 требует от оператора соблюдения мер безопасности при его подготовке и использовании.

Особого внимания требует процесс сваривания металлических заготовок в смесях с высоким содержанием углекислого газа. Дело в том, что при его соединении с кислородом воздуха образуется опасный для здоровья человека угарный газ, для защиты от которого оператор должен работать в специальной маске.

Таким образом, аргон и углекислота в сочетании с рядом активных добавок относятся к универсальным сварочным смесям газов, применяемым при работе с большинством марок чёрных и цветных металлов. Их сочетание наряду с высокой эффективностью использования отличается сравнительно низкой ценой.

Чем дополняются сварочные смеси газов

Кислород (O2) – двухатомный активный компонент, обычно используемый в газовых смесях для электродугового сварочного процесса в концентрациях ниже 10%. Кислород имеет потенциал подводимого тепла, возникающий как из энергии ионизации, так и из его энергии диссоциации (энергии, высвобождаемой путём расщепления молекулы на отдельные атомы в дуге).


На рисунке название химического элемента и его свойства

Кислород создаёт очень широкий и сравнительно мелкий профиль проникновения с высоким уровнем подводимого тепла у поверхности. Поскольку высокий уровень тепла снижает поверхностное натяжение расплавленного металла, облегчается струйный перенос, равно как и увлажнение у шва, расположенного у кромки наружной поверхности шва. Смеси O2/Ar демонстрируют профиль проникновения на уровне «шляпки гвоздя» при электрической дуговой сварке углеродистой стали, что является наиболее распространённым применением. O2 также используется в тримиксах с CO2 и Ar, где он дает преимущества в виде смачивания и струйного переноса металла.

Водород (H2) – двухатомный активный газ, который часто применяется в защитных сварочных смесях в концентрациях менее 10%. Водород в основном используется в аустенитных нержавеющих сталях для того, чтобы облегчить устранение оксидов или увеличить подвод тепла. Как и со всеми двухатомными молекулами, результатом становится более горячий, широкий сварной шов. Для работы с ферритными или мартенситными сталями водород не подходит из-за проблем с растрескиванием. При более высоких концентрациях (30-40%) H2 может использоваться для плазменной резки нержавеющих сталей с целью увеличения мощности и снижения окалины.

Азот (N2) – наименее часто используемая добавка для защитных целей. Азот в основном применяется для производства аустенита и для повышения сопротивлению коррозии в дуплексных и супер-дуплексных сталях. Для более детального ознакомления с данным химическим элементом читайте статью: технический азот и его востребованность в промышленной сфере.

КАК СМЕШИВАЮТСЯ ГАЗЫ?

Для осуществления процесса смешения можно использовать ротаметр. Таким образом, смешивание происходит по месту производства сварочных работ. Но это только один вариант смешивания, который осуществляется прямо на рабочем месте сварщика. Также смеси могут быть изготовлены заранее, например, на заводе по производству газовых сварочных веществ, а также смешиваться заранее, на предприятии, до поступления газа на место сварки. Повлиять на состав смеси можно, например, при непосредственном регулировании уровня расхода каждого из газа смеси, устанавливая редуктор на баллоне с аргоном и другим компонентом на нужный уровень.

Область применения

Сварочные смеси газов используются преимущественно для тех случаев, когда работа ведется с тонкими деталями, цветными металлами и сложно свариваемыми сплавами. Они применяются во всех тех случаях, где необходимо применение полуавтомата. Защита от кислорода из атмосферы требуется практически всегда. Без использования газов работа не может проводиться. Исключение составляют только марки самозащитной проволоки, для которых газовые смеси для сварки не требуются. Основными сферами использования являются ремонтные мастерские, производство автомобилей и другой техники, машиностроение, различные промышленные предприятия, химическая и нефтяная отрасль.

Особенности получения

Смесь газов можно получить от двух баллонов с помощью газового постового смесителя. Однако простейшие модели не могут обеспечить стабильность состава смеси при снижении давления газа в каком-то баллоне. Помимо этого, компоненты в баллонах заканчиваются не синхронно и сварщику надо постоянно следить за остатком газа и часто заменять баллоны. Особенно коварно поведение углекислоты, для которой невозможно определить остаток газа в баллоне и он заканчивается всегда внезапно. Качественные импортные постовые смесители с контролем потока на входе очень дороги (2000 Евро).

Наиболее производительным способом является заводской, где компоненты в строго дозированном количестве поочередно подаются в баллон через вентиль. При этом для (Ar+CO2) смесей первым наполняемым компонентом является углекислота, которая оседает в нижней части баллона. Следующим наполняется аргон , который легче углекислоты и скапливается в верхней части баллона. Поэтому они при поочередном наполнении часто оказываются плохо перемешанными и не соответствуют заявленному составу. Кроме того, фактический состав меняется как во времени, так и при изменении температуры воздуха.

Для обеспечения однородности и стабильности рекомендуется использовать специальную трубку на вентиле внутри баллона. При отсутствии такой трубки для лучшего перемешивания рекомендуется хранить баллон в горизонтальном положении и время от времени вращать его (например, покатать по полу). Хранить баллоны рекомендуется в помещении. После длительного нахождения на холоде и переноса баллона в теплое помещение, равновесная температура в нем, равная температуре окружающего воздуха,устанавливается в течение длительного времени (примерно сутки).

Преимущества

Каждая газовая смесь для сварки полуавтоматом уникально, но в целом все они имеют ряд преимуществ, чем и заслужили столь широкое использование в сварочной сфере. К основным преимуществам стоит отнести:

  • Дает высокое качество шва;
  • Увеличивает производительность сварки;
  • Повышает эффективность работы;
  • Снижает количество брызг расплавленного металла со сварочной ванны;
  • Дает стабильное горение дуги;
  • Швы становятся более плотными и в то же время пластичными;
  • Увеличивает скорость расплавления металла;
  • Снижает уровень задымленности.

Особенности сварки аргоновыми смесями

В процессе важно учитывать некоторые особенности используемых смесей. В первую очередь надо ближе располагать горелку к зоне сварки и по возможности держать горелку ближе к вертикальному положению. Вылет электрода на горелке должен составлять не более 15-20 мм. При увеличении этих размеров возможен подсос воздуха и образование пор в сварном шве.

Во вторых, при работе важно правильно установить расход газа в сварочной горелке. Рекомендуется расход газа в горелке (в л/мин) необходимо устанавливать примерно равным диаметру горелки (в мм). Фактический обычно достаточно 10-15 л,мин. Физически расход газа луче контролировать непосредственно на горелке, например с помощью газового ротаметра). При снижении расхода газа в горелке ниже 5-7 л/мин и при увеличении расхода газа более 25-30л/мин возможен подсос воздуха и образование пор в сварном шве.

В третьих, присутствие аргона или кислорода повышают жидкотекучесть расплавленного металла в ванне. Поэтому при работе зазор между заготовками должен быть значительно меньше, чем для углекислоты. По этой же причине могут возникать трудности при соединении вертикальных швов. Для компенсации данного эффекта надо уменьшать режим или использовать составы с минимальным содержанием аргона.

При работе со сварочными газовыми смесями значительно снижается расход проволоки (до 20%) и поэтому избыток проволоки часто приводит к формированию усиленного валика сварного шва. Кроме того, режимы сварки не соответствуют привычным режимам для чистой углекислоты. Поэтому надо правильно устанавливать режим (напряжение дуги,ток или скорость подачи сварочной проволоки) и отрабатывать новые навыки, в том числе увеличение скорости.

При работе с аргоновыми смесями снижается теплопроводность потока газа в горелке и увеличивается нагрев горелок. При работе на форсированных режимах надо использовать более мощные против обыкновения горелки.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]