Технология и основные методы катодной защиты от коррозии

Для металлических листов и деталей применяют разные технологии антикоррозийной защиты. Большое распространение получила катодная защита от коррозии. Этот способ обладает рядом характерных особенностей, а чаще всего катодную защиту применяют для крупных объектов. Это могут быть трубы, автомобили, металлические свайные конструкции, морские судна. Как именно происходит защита трубопроводов от коррозии на физическом и химическом уровне?

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Сферы применения анодных покрытий


Анодные защитные покрытия, как правило, подходит для титана, сталей, железа и алюминия. Например, у нас в компании есть продукция из анодированного алюминия. Мы предлагаем и её доставку, и установку.

Сюда входят:

  • павильоны для бассейнов. Анодные слои наносятся на их каркасы и рельсы;
  • манежи, ангары и навесы (включая торговые);
  • конструкции для спортивных нужд (к примеру, хоккейные стойки);
  • рекламные профили;
  • перила, поручни и ограды;
  • элементы окон и дверей.

Технология катодной поляризации

В данном случае используется так называемый наложенный ток. Для его подачи на металлический объект используется внешний проводник (часто) или источник тока (редко). При контакте с электрически активной частицей происходит следующее — частица под действием сил электрического притяжения перемещается к защитному элементу с отрицательным зарядом, где происходит «утилизация» этих частиц.

Последствия такой «утилизации» очевидны — защитный элемент со временем сам покрывается коррозией и приходит в негодность. Поэтому данную технологию очень часто называют методом жертвенного электрода (вместо нашей детали происходит ржавление «электрода-жертвы»).

Помимо силы тока и напряжения при работе с катодной поляризацией нужно учитывать еще один важный параметр — это омическое напряжение. В техническом смысле этот параметр отражает тот факт, что по мере протекания электрического заряда со временем напряжение тока в контуре падает. Само падение происходит из-за того, что протекание катодного тока происходит по контуру с более низким зарядом. В случае правильной сборки контура этот показатель является достаточно маленьким — благодаря этому в контуре будет всегда сохраняться один и тот же ток одинаковой мощности.

Товары по теме

Технология создания станций защиты

Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.

Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.

Автоматизация

Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:

  • В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
  • В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.

Правила проведения обработки

Перед нанесением антикора необходимо подготовить поверхность. Требования к подготовке поверхности выдвигаются такие.

  • Очаги ржавчины или потрескавшиеся краска или лак должны быть удалены.
  • Поверхность должна быть очищена от грязи, масел и высушена.
  • Нанесение антикоррозийного покрытия проводится с помощью специального пистолета, либо кистью или валиком.

На предприятиях же, где слишком завышено воздействие агрессивной среды, используется снижение ее воздействия путем:

  • введения ингибиторов;
  • удаления соединений, которые являются проводниками ржавчины.

Существуют также СНиПы. Вот некоторые из них.

  • Пропитка металла материалом с высокой химической стойкостью.
  • Оклеивание специальной пленкой.
  • Использование лакокрасочных материалов, оксидных и металлизированных покрытий.

В правилах по предупреждению конструкций от ржавления всегда указывается состав смесей в зависимости от того, в какой местности будут использоваться защищаемые изделия. Составы могут агрессивными, слабоагрессивными, либо неагрессивными вообще.

Локальная антикоррозийная защита

В правилах также указываются среды биологически активные или химически активные. А также они делятся на жидкие, твердые и газообразные.

В любом случае покраска изделия обязательна, так как она придает ему не только защитные свойства от коррозии, но и внешний эстетический вид.

Особенности катодной защиты труб

Коррозия в трубопроводах обычно возникает из-за различных дефектов и повреждений труб — разрывы, растрескивание, появление щелей и так далее. Из-за коррозии нарушается герметизация труб, что может привести к полной или частичной поломке трубопровода. Особенно остро эта проблема стоит для подземных трубопроводов. При расположении труб под землей создаются участки с разным электрическим потенциалом. Это связано с неоднородностью грунта и наличия в земли различного мусора неорганического происхождения. При наличии серьезной разности потенциалов отрицательно заряженные ионы в земле начинают вступать в реакцию в металлом. Это приводит к коррозии, которая быстро разрушает трубопровод.

Электрический потенциал

Катодная защита трубопроводов от коррозии осуществляется по двум стандартным схемам. С помощью катодной поляризации и с помощью создания внешних станций. Защита трубопроводов должна быть направлена в первую очередь на снижения скорости разрушения материала трубы. Делается это с помощью уменьшения электрического потенциала трубы в сравнении с электрическим потенциалом грунта:

  • Электрический потенциал большинства современных труб составляет приблизительно 0,8-0,9 вольт.
  • Экспериментальным путем было показано, что основные породы грунта обладают потенциалом приблизительно 0,5-0,6 вольт.

Для уравнения электрических потенциалов необходимо снизить потенциал труб всего на 0,3-0,4 вольт. Это позволяет практически полностью остановить появление ржавчины. В случае правильного проведения работ скорость естественного ржавления составит менее 1 мм в год.

Выбор способа

Для труб подходит технология создания внешних станций защиты. В качестве источников питания в данном случае используют воздушные электролинии с напряжением от 500 до 10000 вольт. Чем больше напряжение, тем больше труб можно обслужить. Иногда таких линий нет на том или ином участке. В таком случае имеет смысл монтаж различных генераторов.

У технологии внешних станций есть один крупный недостаток. Для создания защиты придется проводить трудоемкие и сложные работы. Это значительно увеличивает стоимость создания трубопровода. При работе с большим напряжением в точке подачи электричества может создаваться избыточное электрическое напряжение — из-за этого может возникнуть водородное растрескивание труб, поэтому при проведении монтажных работ разводку электричества нужно производить аккуратно.

Вместо технологии защитных станций можно использовать методику применения гальванических анодов для создания эффекта поляризации. Эта технология подходит для грунтов с малым удельным сопротивлением (до 50 Ом на 1 кв. м). Если же удельное сопротивление грунта будет очень большим, то технология применения гальванических анодов является практически бесполезной в связи с ее малой эффективностью.

Порошковая окраска

Альтернативой лакокрасочным составам стала изобретенная в 1950 году покраска порошковой краской.

Внешне процесс ее нанесения похож на напыление сжатым воздухом. Однако сразу бросается в глаза отсутствие «тумана» — взвеси краски в воздухе. Деталь словно сама притягивает краску, которая оседает на ней ровным слоем.

Притягивание обеспечивает электричество. Саму деталь заряжают положительным, а краску отрицательным зарядом высокого напряжения. И поскольку разноименные заряды притягиваются, краска прилипает к металлу, так же как прилипают кусочки бумаги к расческе потертой о волосы.

Затем деталь нагревают до температуры 200-250 градусов. Краска плавится и, растекаясь, образует тончайший, всего несколько десятков микрон, но прочный плотный слой.

Жесткие технологические требования, дорогое оборудование диктуют в полтора – два раза большую по сравнению с обычной краской стоимость. Тем не менее, высокое качество монолитных полимерных покрытий, позволяет им на равных конкурировать с традиционными, но и даже вытеснять их в ряде случаев.

На сегодня нанесение порошковых покрытий стало обычным делом, его можно заказать даже через Интернет https://oooprofpokraska.ru/metall/.

Особенности катодной защиты автомобилей

Коррозия на автомобилях часто появляется внезапно. Скорость её распространения очень высокая, поскольку у авто есть большое количество подвижных элементов. Во время эксплуатации в таких элементах могут образовываться различные маленькие трещины и вмятины. Это значительно увеличивает риск появления коррозии. Катодная защита автомобиля от коррозии обычно осуществляется путем перераспределения электрического потенциала.

Обычно используются специальные электронные модули, которые имеют компактные размеры и монтируются внутри автомобиля. Монтаж подобных блоков занимает не более 20 минут.

Дополнительная обработка

Также стоит обратить внимание, что метод катодной защиты обычно комбинируется с другими техниками:

  • Все основные детали автомобиля покрываются специальными красками и мастиками. Они создают на поверхности металла защитный слой. Этот слой обладает электрической нейтральностью. Поэтому при контакте с электрически активными веществами или ионами ржавление не происходит.
  • Некоторые элементы автомобиля могут покрываться защитными катодными пластинами, которые также минимизируют риск появления ржавчины. Пластинами обычно покрывают подвижные части, которые растрескиваются и повреждаются чаще всего. Это днище автомобиля, арки задних колес, фары, внутренние поверхности дверей и так далее.

Грунтовка

Данные составы не относятся к виду декоративных и использовать их в качестве финишного покрытия не стоит. Грунтовка лишь подготавливает поверхность для окрашивания, устанавливая слой дополнительной защиты

Использование грунтовочного состава довольно важно, так как он выполняет сразу несколько функций:

  • усиливает сцепление металла с финишным слоем;
  • предотвращает процесс окисления;
  • усиливает защитные свойства краски;
  • снижает расход основного ЛКМ.

Грунтовок по металлу на строительном рынке великое множество, но перед обработкой конструкции важно разобраться, какую проблему следует устранить и какие свойства краски усилить. Выделим основные типы грунтовок по металлу и опишем, для чего их применяют


Состав грунтовки зависит от степени повреждения металла

Таблица 1. Типы грунтовок (характеристика).

Тип грунтовкиКраткая характеристика состава
ПассивирующиеПереводят металл в пассивное состояние по отношению к окружающей среде. Основное действую вещество- хроматы, нюанс в их количестве в составе. Низкий процент хроматов в грунтовке даст обратный эффект и ускорит процесс коррозии.
ИзолирующиеОбразуют тонкую защитную пленку на поверхности железа. Обычно производятся на эпоксидной или алкидной основе. Весьма бюджетный вариант, рекомендованы к использованию на черных металлах.
ФосфатирующиеТакие грунтовки по сути пассивирующие, но подойдут для работ по цветному металлу. В обиходе наиболее известны, как грунтовки для цинка, потому как чаще других используются для обработки оцинкованного железа.
ПротекторныеСмеси включают в состав фосфорную кислоту, образуют защитную пленку. Подойдут для работы на поврежденных коррозией поверхностях.
ИнгибирующиеНовые составы. Выпускаются даже на водной основе, по этой причине просты в использовании. Замедляют процесс уже начавшейся коррозии.

Использование грунтовки не просто защитит металл от коррозии, а значительно продлит срок его эксплуатации.


Грунтовки по металлу всегда цветные, чтобы было хорошо видно обработанную область

Разновидности коррозии

Перед тем как защитить металл от ржавчины, следует узнать о существующих видах. Способ обеспечения антикоррозийной защиты находится в прямой зависимости от условий применения деталей. Потому принято выделять следующие типы:

  • коррозия, которая связана с явлениями атмосферного характера;
  • разрушение структуры металла в воде из-за наличия в ней солей и бактерий;
  • деструктивные процессы, происходящие в грунте (почвенная коррозия).

Способы антикоррозионной защиты при этом должны подбираться в индивидуальном порядке, руководствуясь тем, в каких условиях будет эксплуатироваться изделие из металла.

Что касается типов поражения конструкций, то они могут быть следующими:

  • ржавчина находится на всей поверхности изделия отдельными участками или сплошным покрытием;
  • имеет вид пятен и проникает вглубь элемента;
  • разрушает молекулы металла, приводя к трещинам;
  • масштабное ржавление, при котором разрушается не только поверхность, но и более глубокие слои.

Типы разрушения бывают и комбинированными. В некоторых ситуациях их очень сложно определить на глаз, особенно при точечном ржавлении.

Принято выделять химическую коррозию. При контакте с нефтяными продуктами, спиртами и иными агрессивными веществам происходит особая реакция, которая сопровождается высокой температурой и выделениями газа.

При электрохимической коррозии поверхность металлического сплава соприкасается с водой (электролитом). При этом осуществляется диффузия материала. Электролит обуславливает появление электротока, а электроны металла замещаются и приходят в движение, в результате чего возникает ржавчина.

Обеспечение защиты от коррозии и выплавка стальных изделий — две взаимосвязанные вещи. Коррозия причиняет существенный ущерб постройкам хозяйственного или промышленного назначения. Кроме того, этот процесс может привести к катастрофе, если говорить, например, об опорах электропередач, мостах, заграждениях и т. д.

Характерные типы поражения ржавчиной

Различают следующие характерные виды поражения коррозией:

  • Поверхность покрыта сплошным ржавым слоем или отдельными кусками.
  • На детали возникли небольшие участки ржавчины, проникающей в толщину детали.
  • В виде глубоких трещин.
  • В сплаве окисляется один из компонентов.
  • Глубинное проникновение по всему объему.
  • Комбинированные.

Виды коррозионных разрушений

По причине возникновения разделяют также:

  • Химическую. Химические реакции с активными веществами.
  • Электрохимическую. При контакте с электролитическими растворами возникает электрический ток, под действием которого замещаются электроны металлов, и происходит разрушение кристаллической структуры с образованием ржавчины.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]