Особенности состава, свойств и характеристик алюминия


Алюминий представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его повсеместное использование. Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с железом и свинцом), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде. Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Алюминий на наших кухнях

Наряду с глобальными новостройками в нашей жизни еще немало мест, где алюминий занимает одну из ведущих ролей. И самую маленькую, но не менее важную площадь занимают наши кухни. Но если внимательно присмотреться, то серебристый металл захватил там, чуть ли не господствующее положение.

В нашем мире всегда полным-полно крайностей. Одни стремятся окружить себя только предметами роскоши. Другие стараются экономить везде, где это только можно. Так и на наших кухнях можно увидеть либо дорогую сталь с позолотой, либо дешевый пластик. И в основном это касается корпусов бытовой техники. Начиная от кофеварки и заканчивая холодильником.

Но в мире еще достаточно и людей, которые придерживаются золотой середины. И как не банально это звучит, они выбирают аппаратуру, заключенную в алюминиевый корпус. Ведь это самое разумное решение, которое может предложить производитель. Оно решает сразу несколько проблем.


Алюминиевый корпус кофемашины Источник tiu.ru

В плане надежности и прочности конструкции, алюминий может легко поспорить со сталью. Отсюда и высокая безопасность при эксплуатации, поскольку материал не ржавеет и не горит. А высокая его пластичность позволяет штамповать различные формы, которые легко впишутся в любой дизайн кухни. От современного до ретро или кантри.

Кстати. Очень модный хай-тек вообще невозможен без серебристых сооружений. А все из-за великолепного блеска алюминия. Но бывает, что даже матовая поверхность смотрится намного выигрышнее. Правда, это все дело вкуса.

А на втором месте после техники находится кухонная посуда. Но приоритеты могут быть другими. А чтобы развеять возражения скептиков, следует указать на один факт. Современная посуда из алюминия, это далеко не то, к чему привык бывший советский обыватель. Времена, когда на кухнях ели из матовых алюминиевых мисок, ковыряясь в них серыми (а не серебристыми) ложками или вилками, давно прошли.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С. Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях. По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения. Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Уход за алюминиевой посудой

Начать нужно с универсального совета. Посуду лучше мыть сразу после использования. Во-первых, это значительно легче. Во-вторых, так можно продлить срок службы у предмета. Единственная оговорка – необходимо дать время посуде на остывание. Ведь попадание даже капли холодной воды на раскаленный металл способно привести к его деформации.

Удаление жира и гари

Блеск у алюминия возвращается даже после удаления многолетней гари:

  • Понадобится большая емкость из металла, чтобы в ней полностью утопилась испорченная сковорода или кастрюля.
  • Тара заполняется водой.
  • Кусок хозяйственного мыла измельчается на терке.
  • Порошок добавляется в воду.
  • Туда же вливается 300 грамм силикатного клея.
  • Раствор доводится до кипения, и в него погружается грязная посуда.
  • Необходимо продержать ее на медленном огне не меньше одного часа.
  • После этого с предосторожностями ее достают из кипятка.
  • Мягкая фланель легко и быстро убирает размягченную гарь.

После завершения чистящей операции следует тщательно прополоскать изделие. Таким же способом удаляется и накипь с поверхности. Но можно попробовать приготовить раствор из нашатырного спирта (10 капель на литр) и мыла. Технология очистки такая же.


Удаление нагара с алюминиевой сковороды Источник sdelai-lestnicu.ru

Возвращение блеска

Сделать алюминиевые предметы, как новыми, помогут следующие действия:

  • Внутрь посуды нужно залить кислое молоко и оставить на 40 минут.
  • Натереть стенки половинкой кислого яблока или лимона. Оставить посуду на пару часов.
  • Замочить предмет в пищевом уксусе на несколько часов.
  • Прокипятить 10 минут в посуде порезанную луковицу.
  • Натереть мокрую поверхность зубным порошком и оставить на всю ночь.

После выполнения любой из операций всегда необходимо заканчивать тщательным полосканием в теплой воде.

Борьба с чернотой

Вернуть блеск алюминию после его закопчения на костре может винный уксус или лимонная кислота:

  • Салфетка смачивается данными растворами. Затем ей протираются стенки.
  • Внутрь посуды наливается вода. В нее добавляется или уксус, или кислота.
  • Жидкость доводится до кипения. Огонь убавляется до минимума и выжидается не более 15 минут.
  • После остывания, раствор сливается.
  • Стенки проходят мягкой губкой с теплой водой.

Обычно в походе для чистки используют песок для очистки котелка от копоти костра. Не нужно этого делать. Причины будут указаны ниже. Лучше принести закопченную посуду домой и воспользоваться вышеуказанным рецептом.

Предостережения

Все жесткие виды чистящих средств под строгим запретом. Даже если не прикладывать значительных усилий, поверхность все равно поцарапается. Нарушение защитной пленки приведет к тому, что алюминий будет контактировать с пищей.


Мытье посуды жесткой мочалкой Источник biolshop.com.ua

Вторая причина исключения жестких средств для чистки заключается в том, что сталь способна оставлять глубокие борозды. Они со временем забиваются грязью. Удалить ее из глубокой царапины не представляется возможным. По этой же причине лучше не использовать песок или любые абразивы.

Еще под запретом сода. Хоть она и считается универсальным чистящим средством, но для алюминия категорически не подходит. Ведь в ней находятся щелочи, а они будут губительны для наружного защитного слоя.

Нельзя мыть предметы в посудомоечной машине. Во-первых, из-за этого блеск алюминий потеряет. Во-вторых, моющие средства для этих агрегатов все без исключения содержат щелочь. Производители даже специально увеличивают их количество для увеличения качества мытья. Посуда будет безнадежно испорчена.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Вред от принятия пищи из алюминиевой посуды

Отсекая огромный ворох страшилок об опасностях, связанных с алюминием, следует обратить внимание на официальное заявление Всемирной организации здоровья. Еще в 1998 году было сказано, чтобы нанести вред организму человека алюминием, его нужно принять внутрь более 50 мг одномоментно.

Для простого примера можно сказать, что даже кислые щи, простояв в алюминиевой кастрюле целую неделю, вбирают в себя не более 3 мг вещества. А поскольку вся окружающая человека среда имеет в своем составе алюминий, то он поступает в организм постоянно. Мало того. Он еще и вырабатывается организмом.

Но даже усиленный прием лекарств (содержащих алюминий) не может быть опасен. Если собрать все факторы воедино, то суточная норма вещества никогда не может быть превышена при естественном порядке. Для того, чтобы получить отравление алюминием вместе с пищей, в нее необходимо только добавить его в большом количестве намеренно.

В течение 20 лет с момента первого заявления, ВОЗ неоднократно выступала с различными докладами, пресекающими различные мифы. Одним из них выступает связь болезни Альцгеймера с принятием пищи из алюминиевой посуды. Медицинские исследования это не подтвердили.


Алюминий и Альцгеймер Источник Яндекс.Дзен

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Как используют алюминий в строительстве

Для начала немного статистики. Дело в том, что более 25 % всего производимого в мире алюминия используется именно для строительства. Ведь этот легкий металл совершенно нетоксичен и довольно-таки долговечен. Расчетный срок для службы алюминиевой конструкции начинается с 80 лет. Но эксплуатируется он намного дольше.


Крыша здания, покрытая алюминиевыми панелями Источник stroykroff.ru

К тому же его можно использовать, практически, в любых климатических условиях. Диапазон температур, при которых металл не теряет своих свойств, простирается от минус 80 до плюс 300 °C. А теплоизолирующая способность сайдинга позволяет защитить помещение от холода в четыре раза лучше, чем дополнительная кирпичная кладка в один ряд.

Если брать жесткость и несущую способность, то по сравнению со сталью выигрыш будет в 2-3 раза. А если заменять железобетонные конструкции, то в целых семь раз. Поэтому вывод очевиден. С легким материалом работать не только проще, но и выгоднее.

Производство

Алюминий легко обрабатывается. И плоский или цилиндрический слиток без проблем превращается в нужные для строительства элементы. В плиты для подвесных потолков и стеновых панелей. В лестницы и листы для покрытия кровли. И даже в окна и двери.


Входные двери из алюминия Источник promportal.su

Для создания любых форм, от самых простых до архитектурно сложных, чаще всего применяют метод экструзии. Он заключается в том, что размягченный металл помещают в специальную матрицу. Затем будущие детали просто выдавливаются через отверстия различных сечений. После такого процесса не требуется дальнейшая доводка. Размеры полученных элементов сохраняют максимальную точность.

Листы, проволоку и ленты получают горячим или холодным давлением. А детали чаще всего не требуют никакой защиты, поскольку алюминий не боится ржавчины. И для придания блеска алюминий полируют.

Но если по технологии в нем много различных примесей, то антикоррозийные свойства могут значительно снизиться. И в этом случае металл дополнительно анодируют. Или просто покрывают различными лакокрасящими составами.

Но анодирование чаще всего и так завершается окрашиванием. После создания на поверхности металла еще одной защитной пленки электрохимическим способом, деталь погружают в подогретую ванну с краской. После этого поверхность приобретает неповторимую привлекательность. И именно за это качество материал так горячо любим многими дизайнерами.

Небоскребы

Без подобных зданий уже не может обойтись ни один мегаполис. И дело не только в нехватке свободной площади для застроек. Применение алюминиевых конструкций позволяет значительно уменьшить выброс углекислоты в атмосферу. Что на сегодняшний день является важнейшей экологической проблемой.


Знаменитая башня Мэри-экс Источник landshaftnik.com

К тому же легкие светопрозрачные фасады здания позволяют существенно экономить на его энергозатратах. Дело в том, что в алюминиевую раму вставляется не обычное стекло, а его аналог с низкой теплопроводностью. Этим одновременно закрываются две проблемы. Большая площадь остекления позволяет меньше использовать искусственное освещение. А благодаря технологии U-Value, стекло летом не пропускает внутрь зной, а зимой не выпускает тепло.

Ярким примером успешного применения алюминиевых фасадов является здание Crystal в Лондоне. В нем разместился Центр устойчивого городского развития. И хотя строение не является небоскребом, в нем отлично проявились все энергосберегающие технологии. Crystal на 46 % меньше использует электричества, чем здания из стали и бетона. К тому же оно на целых 65 % ниже по выработке углекислого газа. Это в сравнении с теми же железобетонными офисными строениями такой же площади.

Учитывая, что планете грозит скорая перенаселенность, алюминий выходит на первое место. Как строительный материал будущего. И то, что он снижает выбросы углекислоты, а также имеет стопроцентную перерабатываемость, играет значительную роль.


Здание из алюминия и стекла в Лондоне Источник мосдольщик.рф

Павильоны

Нельзя обходить вниманием строительство помещений с огромной площадью. Такие здания всегда необходимы мегаполисам. Они служат развлекательными центрами, выставочными или торговыми залами. И современная архитектура, используя технологию создания сетчатой оболочки, выстраивает по всему миру павильоны любых форм и размеров.

Метод разработан еще в 1896 году. Его автор русский инженер и архитектор Владимир Шухов. Но для возведения подобной конструкции требуются очень сложные расчеты. А в те далекие времена не каждый за них брался.

Век компьютеризации значительно упростил моделирование. К тому же появились новые строительные материалы. Взять хотя бы тот же алюминий. Поэтому доработанная технология прочна вошла в современную архитектуру. А метод создания сетчатой оболочки стал доминировать при строительстве больших павильонов.


Алюминиевая крыша над парком развлечений в Абу-Даби Источник tonkosti.ru

Способ позволяет придавать оболочке любую форму. А материалами может служить, как сталь, так и алюминиевые сплавы. В последнем случае конструкция облегчается почти в три раза. Ведь крышу можно также сделать из легких и прочных сплавов.

В качестве примеров можно привести несколько самых знаменитых павильонов. И у каждого из них есть свои особенности. Развлекательный парк, ну, просто гигантских размеров построила в Абу-Даби. Его крыша из алюминия побила все рекорды по площади. Из нее получилось бы более шестнадцати с половиной тысячи автомобилей.

Огромный атриум Riverwalk вблизи Далласа раскинулся на целых 16 000 квадратных метров. Павильон закрыт крышей из алюминия и это позволяет поддерживать внутри собственный микроклимат. А если бы кровля концертного зала «Дзинтари» в прибалтийской Юрмале была бы сделана не из алюминия, то она бы не смогла раздвигаться.

Спортивные сооружения

Алюминий позволил построить буквально все крытые стадионы и бассейны. Тяжелая сталь просто бы не смогла стать основой сетчатой оболочки. До использования алюминия можно было реализовывать только открытые спортивные сооружения.

Ярким примером выступает масштабная конструкция Центра для водных видов спорта в Лондоне. Под крышей нестандартной формы разместились сразу три крупных бассейна. Сама кровля имеет вид морской волны и весит целых три тысячи тонн. Под ней расположилось 17 500 мест для зрителей.


Здание для водных видов спорта с крышей из алюминия Источник veryimportantlot.com

Алюминий стал ключевым материалом при строительстве всех значимых объектов для зимней олимпиады в Сочи. И это только пара примеров. Но на достигнутом никто не останавливается. Ведется поиск новых технологий. И уже в скором времени ученый мир обещает внедрить в производство инновационные панели из алюминия, которые сделают переворот в строительстве высотных зданий.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Почему металл воняет?

Основной причиной «металлического» запаха являются жиры. Под действием ферментов оксидоредуктаз жиры окисляются до перекисей липидов. Катионы железа Fe2+ разлагают перекиси липидов с образованием интенсивно пахнущих веществ.

Интересные материалы:

Как загрузить фото из галереи в одноклассники? Как загрузить фото из ВК? Как загрузить фото на аватарку вконтакте? Как загрузить фото на фейсбук в хорошем качестве? Как загрузить фото на страницу в фейсбук? Как загрузить фото с айфона на айпад? Как загрузить фото с айфона в гугл диск? Как загрузить фото с айфона в гугл фото? Как загрузить фото с Гугл фото? Как загрузить фото с компьютера?

Конструкционные стали.

Их классифицируют по характеристикам и по химическому составу сплавов. Если качественные и обыкновенные. И те и другие – углеродистые стали, хоть содержание углерода в них незначительное.

Предназначение обыкновенных конструкционных сплавов – изготовление промышленных изделий, которые должны подвергаться серьезным механическим нагрузкам: гвоздей, болтов, уголков, швеллеров, балок и т.п. Качественные конструкционные стали подходят для изготовления деталей, используемых в машиностроении. Конечно, выдерживаемые нагрузки у них гораздо ниже, такие марки стали гораздо мягче, их используют для изготовления деталей методом холодной штамповки. Кроме того есть особо-высококачественные марки, их называют криогенными. Они сохраняют прочностные характеристики при экстремально низких температурах. Из них делают емкости для транспортировки и хранения сжиженных газов, а так же применяют при строительстве объектов в условиях вечной мерзлоты.

Латунь.

Сплав меди с цинком. Различное соотношение этих двух составляющих позволяют получать сплавы с различными свойствами. Если цинка от 5 до 20 % – латунь называется красной, и желтой, если содержание цинка 20-36 %

Эти сплавы ковкие и имеют достаточно низкую температуру плавления. Внешне латунь напоминает золото, поэтому часто используется в прикладном искусстве и декоре . Мебельная фурнитура, замки, декоративные элементы. Из латуни делают музыкальные инструменты. Используется она и в военной промышленности.

Электропроводность и носители тока

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга.

Поскольку плотность тока определяется для одного типа носителей формулой:

j→=qnv→cp.,{\displaystyle {\vec {j}}=qn{\vec {v}}_{cp.},} где q{\displaystyle q} — заряд одного носителя, n{\displaystyle n} — концентрация носителей, v→cp.{\displaystyle {\vec {v}}_{cp.}} — средняя скорость их движения,

или j→=∑iqiniv→icp.{\displaystyle {\vec {j}}=\sum _{i}q_{i}n_{i}{\vec {v}}_{icp.}} для более чем одного вида носителей, нумеруемых индексом i,{\displaystyle i,} принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (возможно отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей), то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):

v→cp.=μE→,{\displaystyle {\vec {v}}_{cp.}=\mu {\vec {E}},} где μ{\displaystyle \mu } — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде.

Отсюда следует, что для электропроводности справедливо выражение:

σ=qnμ,{\displaystyle \sigma =qn\mu ,}

или:

σ=∑iqiniμi{\displaystyle \sigma =\sum _{i}q_{i}n_{i}\mu _{i}} — для более чем одного вида носителей.

Удельная электропроводность некоторых веществ (таблица)

Удельная проводимость приведена при температуре +20 °C:

ВеществоСм/мВеществоСм/мВеществоСм/мВеществоСм/мВеществоСм/м
серебро62 500 000молибден18 500 000олово8 330 000ртуть1 040 000мрамор10−8
медь59 500 000вольфрам18 200 000сталь литая7 690 000нихром893 000стекло10−11
золото45 500 000цинк16 900 000свинец4 810 000графит125 000фарфор10−14
алюминий38 000 000никель11 500 000нейзильбер3 030 000вода морская3кварцевое стекло10−16
магний22 700 000железо чистое10 000 000константан2 000 000земля влажная10−2янтарь10−18
иридий21 100 000платина9 350 000манганин2 330 000вода дистилл.10−4
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]