биотуалет для дачи купить Если купить биотуалет для вас слишком дорого или нецелесообразно, можно взять кабину в аренду на любой срок. Особенности и преимущества биотуалетов. Биотуалет – отличное решение для любых мест, где нет возможности организовать стационарное санитарно-гигиеническое помещение по причине отсутствия канализации.

Симисторы: принцип работы, проверка и включение, схемы


Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .


Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.


Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.


ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Вам это будет интересно Принцип действия и устройство магнитоуправляемого геркона

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Вам это будет интересно Прибор Амперметр переменного тока

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.


Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

Вам это будет интересно Генератор из асинхронного двигателя своими руками

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Что такое симистор и для чего нужен

В силовой электронике в качестве управляемого коммутирующего элемента часто применяются один из видов тиристоров — тринисторы. Их преимущества:

  • отсутствие контактной группы;
  • отсутствие вращающихся и движущихся механических элементов;
  • небольшая масса и габариты;
  • длительный ресурс, независящий от количества циклов включения-выключения;
  • невысокая стоимость;
  • высокое быстродействие и бесшумная работа.

Но при применении тринисторов в цепях переменного тока проблемой становится их односторонняя проводимость. Чтобы тринистор пропускал ток в двух направлениях, приходится идти на ухищрения в виде параллельного включения во встречном направлении двух тринисторов, управляемых одновременно. Логичным выглядит объединение этих двух тринисторов в одной оболочке для удобства монтажа и уменьшения габаритов. И этот шаг был сделан в 1963 году, когда советские ученые и специалисты General Electric почти одновременно подали заявки на регистрацию изобретения симметричного тринистора – симистора (в зарубежной терминологии триака, triac – triode for alternative current).

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Симистор? Впервые слышу

Симистор — это один из подвидов тиристоров, который обычно состоит из множества тиристоров. По-другому его также называют симметричный симистор.

Из чего состоит этот симистор?

Симистор очень часто физики представляют в виде пятислойного полупроводника. Также бывают и изображения в виде 2 тиристоров. При этом, управление сильно отличается от того, как управляется включенные триодные тиристоры потому их и выделили в отдельную группу. Давайте теперь узнаем, как работает управление.

Управление симистором

Дело в том, что у обыкновенного тиристора есть как катод, так и анод, причем каждый из них выполняет строго определенную функцию, а вот у симистора все немного иначе. Представим, что у нас есть и катод и анод, но когда симистор подключен и работает, то катод становится анодом, а анод — катодом. Вот такое чудесное превращение. Именно поэтому мы не можем сказать, что они здесь присутствуют в явном виде и будет просто называть их выходами (электродами). Для того, чтобы точно не ошибиться, давайте будет называть выходы симистора условными катодом и анодом. Еще немного теории.

У симистора управление работает следующим образом: на входе полярность может быть либо отрицательной — это первый вариант. Второй вариант — это тот, когда она совпадает с полярностью на аноде, что встречается реже. Далее все просто — задаем нужную силу тока и ее хватает для отпирания симистора. Обратите внимание, что для тока специально сделан управляющий электрод, именно им мы и пользуемся для этой цели.

Вуаля! Главная сложность для нас здесь — это подобрать идеальный ток, вот и все!

Симистор схема

Теперь, когда мы уже знаем достаточно много о структуре симисторов и том, каким образом они обычно управляются, пришло время посмотреть, как они выглядят на схемах и что здесь есть интересного. Взгляните, например, на эту схему:

Здесь нам стоит сразу отметить, какие есть условные обозначения, чтобы дальше без проблем разбираться во всех схемах. Симисторы обычно имеют 3 электрода, один из которых — это затвор. Его обозначают через английскую букву G. Что, уже гораздо больше понимания, верно? Отлично! Теперь давайте разберемся со схемой немного другого симистора. Замечаете отличия? Да, ведь здесь симистор составлен из целых 2 тиристоров!

Ага, а почему же тогда это симистор? Почему нельзя было сюда поставить схему обычного эквивалентного тиристора? А все дело в том, что управляется такая схема несколько иначе.

Регулятор на симисторе

Теперь пришло время нам обсудить, каким образом симистор регулирует напряжение. Это на самом деле очень интересно. Смотрите. Как только симистор начинает работать, на один из его электронов сразу же подается напряжение, которое всегда является переменным. Далее на управляющий электрод дается отрицательный ток, который и будет управлять процессом. Как будет преодолен порог включения (он всегда известен заранее, в этом и удобство), симистор откроется и ток начнет проходить через него. Отметим, что симистор перестанет работать в тот момент, когда ток поменяет полярность (другими словами он закроется). Далее все идет цикл за циклом и повторяется.

Ага, вроде понятно. А что влияет на скорость открытия и закрытия симистора? Что влияет на силу на выходе? Здесь все опять же очень просто. При нарастании входного напряжения импульс на выходе также увеличивается. Соответственно, если на входе маленькое напряжение — то и на выходе импульс будет короткий. Приведем в пример обыкновенную лампочку с симистором. Чем больше подаем напряжения — тем ярче лампочка. Здорово, не так ли?

Режимы работы симистора

Симистор может работать как под воздействием отрицательного тока, так и под воздействием положительного. Всего выделяют четыре основных режима работы: все зависит от полярности и входного напряжения.

В чем главные достоинства симистора

Давайте рассмотрим симистор как реле. В такой роли у него много существенных преимуществ:

  • дешево. Да, это тоже плюс. Ну а что? Когда вам нужно сразу много, то будет очень хорошо, если потратить нужно будет меньше
  • служит очень долго (конечно же, по сравнению с другими приборами этого класса)
  • надежность из-за отсутствия контактов

Но есть у него и минусы

Конечно, идеальных приборов пока не придумали, поэтому здесь мы тоже не в праве их скрывать:

  • сильная чувствительность к высоким температурам
  • работает только на низких частотах (уж слишком долго он открывается и закрывается)
  • иногда бывают внезапные срабатывания из-за естественного внешнего электромагнитного воздействия

Применение симисторов

Триаки надежно применяются во многих электробытовых приборах:

  • блоки регулировки освещения или диммеры;
  • строительный электроинструмент (дрели, перфораторы, шлифовальные машины и др.);
  • электрические нагреватели с регулировкой температуры нагрева (плиты, печи);
  • компрессоры холодильников и кондиционеров;
  • пылесосы, фены, вентиляторы, швейные, стиральные и посудомоечные машины.

В промышленности применение симисторов аналогично бытовому использованию: это управление электродвигателями, осветительными и нагревательными приборами.

Объемы производства и применения симисторов постоянно увеличиваются. Широкая номенклатура этой продукции ON Semiconductor позволяет разработчику найти оптимальное решение для многих поставленных задач. Большинство рассмотренных в статье симисторов поддерживаются на складе компании КОМПЭЛ и практически всегда доступны для разработчиков.

Получение технической информации, заказ образцов, поставка — e-mail

Драйверы сверхъярких светодиодов

Драйверы NCP3066 и NCV3066 обеспечивают постоянный ток для питания сверхъярких светодиодов. Они поддерживают напряжение в цепи обратной связи на очень низком номинальном значении 235 мВ, что используется для регулирования среднего тока линейки светодиодов. Помимо этого, они имеют широкий диапазон входного напряжения (до 40 В), для работы от источников питания 12 В постоянного или переменного напряжения или от аккумуляторных батарей. Данные микросхемы разработаны для топологий boost, buck, buck/boost и SEPIC и требуют минимального количества внешних компонентов. Они имеют функцию включения/выключения, которая отправляет устройства в режим ожидания (<100 мкA), или может быть использована для прямого ослабления свечения светодиодов. Микросхема NCP3066 выпускается в корпусах PDIP-8 и SOIC-8, а также в корпусе DFN-8. NCV3066, которая отвечает требованиям автомобильных применений, имеет корпуса PDIP-8 и SOIC-8, а также корпус DFN-8.

Мощные N-канальные МОП-транзисторы на 40 В

ON Semiconductor представила мощные МОП-транзисторы NТD5803Т и NTD5807N. Изделия используют канальную технологию, которая позволяет достигать отличных показателей по току для изделий в стандартной промышленной упаковке DPAK-4. Эти транзисторы могут с успехом применяться в автомобильных применениях, для LCD-подсветки, драйверов светодиодов, в электродвигателях постоянного тока и для синхронного выпрямления питания, где важны производительность системы и экономия пространства. Транзистор NТD5803N поддерживает ток 76 А; NТD5807Т рассчитан на 23 A. Эти изделия выходят вслед за уже существующей моделью NТD5802ТN, работающей при токе 101 А.

•••

Особенности и ограничения

Существуют ограничения применения симистора при коммутации реактивной (индуктивной или ёмкостной) нагрузки. При наличии такого потребителя в цепи переменного тока, фазы напряжения и тока сдвинуты относительно друг друга. Направление сдвига зависит от характера реактивности, а величина – от величины реактивной составляющей. Уже сказано, что триак выключается в момент перехода тока через ноль. А напряжение между MT1 и МТ2 в этот момент может быть достаточно большим. Если скорость изменения напряжения dU/dt при этом превысит пороговую величину, то симистор может не закрыться. Чтобы избежать этого эффекта, параллельно силовому тракту симистора включают варисторы. Их сопротивление зависит от приложенного напряжения, и они ограничивают скорость изменения разности потенциалов. Того же эффекта можно добиться применением RC-цепочки (снаббера).

Мощность симистора

Теперь, когда мы уже достаточно много знаем о симисторах, пришло время перейти к технической части. Как? Уже? Ага, вы уже к этому готовы. Итак, самый главный аспект, который волнует всех покупателей этого замечательного прибора — это мощность. Конечно, под этим понимается обычно целая совокупность технических характеристик симистора. О них и пойдет речь. Отметим, что мы разберем характеристики на примере довольно популярной модели — BT139-800.

Сначала давайте узнаем. Что вообще из себя представляют технические характеристики. Больше всего нас будут волновать:

  • самое большое напряжение, которое только возможно
  • самое большое напряжение, когда симистор открыт
  • то напряжение, при котором симистор отпирается
  • самый маленький ток, при котором открывается симистор
  • температуры, при которых работает симистор
  • время отклика (срабатывания)
  • Ага, вроде бы мы обо всем этом уже говорили, поэтому не так уж и сложно. Хорошо. Теперь о каждой характеристике немного подробнее.

    Время отклика (срабатывания)

    Скорость срабатывания симистора — это тоже очень важный параметр. Почему? Когда в цепи много таких симисторов и если каждый будет долго срабатывать, то большой аппарат будет очень долго реагировать на каждую команду или даже вообще не сможет работать.

    У тока тоже есть своя скорость, а если на его задержку еще будет накладываться куча других, то прибор может стать ну очень медленным, поэтому на это тоже нужно обращать внимание. Наш симистор срабатывает в среднем за 2 микросекунды и это очень хороший результат. Формально, это то время, которое пройдет с момента, когда симистор начинает открываться и уже открыт.

    Температура тоже важна

    Симисторы, конечно же, работают при достаточно обычных для нас температурах. Однако при помещении его в критические условия будет лучше, если этот диапазон будет очень широким. Наш симистор работает при температуре от МИНУС 40, до ПЛЮС 125 градус по Цельсию. В обычной жизни этот диапазон оптимален, поэтому тут добавить нечего.

    Самое большее возможное напряжение

    В симисторе BT139-800 это 800 вольт и других моделей этот параметр может отличаться. Не стоит считать, что это напряжение, при котором симистор отлично работает. Нет, напротив — это теоретическое напряжение, от которого симистор еще не выйдет из строя. То есть при идеальных условиях для конкретной модели этот симистор еще вытянет такое напряжение в цепи, однако при превышении его шансов на дальнейшую работоспособностью почти нет. Идем дальше.

    Делаем своими руками

    На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

    Схема прибора

    Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

    Основные компоненты:

    • симистор VD4, 10 А, 400 В;
    • динистор VD3, порог открывания 32 В;
    • потенциометр R2.

    Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

    Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

    Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

    Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

    Используемые элементы:

    • Динистор DB3;
    • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
    • Диоды VD1, VD2 типа 1N4007;
    • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
    • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

    Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

    Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.


    Схема симисторного регулятора мощности

    Сборка

    Сборку регулятора мощности необходимо производить в следующей последовательности:

    1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
    2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
    3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
    4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
    5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
    6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
    7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
    8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
    9. Поместить собранную схему в пластиковый корпус.
    10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
    11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
    12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.


    Симисторный радиатор мощности

    Сигналы управления

    Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

    Схема подачи напряжения для управления симистором

    Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

    Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет  отрицательную полярность, а на управляющем электроде —  положительную).

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]