Практически всем хорошо известны трехфазные электродвигатели, они широко применяются в промышленности, позволяют решать самые различные задачи. Да и принцип получения переменного тока, как физической величины мы привыкли рассматривать на примере тех же трехфазных асинхронных генераторов. Но как быть в бытовых условиях, где присутствует только одна фаза, народные умельцы научились выполнять подключение трехфазных электрических машин, но это не обязательно. На практике давно используется однофазный асинхронный электродвигатель, который может выполнять все свои функции даже в домашней сети переменного тока.
Сфера применения
Модели таких приводов чаще всего применяются в домашних и промышленных условиях. Мощность отдельных электродвигателей варьируется в пределах от 4 Вт до 10 кВт, в зависимости от сферы использования может быть маленькая. Основные типы устройств, где можно использовать электрический привод этого типа:
- Вентиляторы, применяемые в промышленных целях.
- Разнообразные обрабатывающие станки.
- Бытовая техника.
- Насосное оборудование.
Однофазные электродвигатели 220 В получили широчайшее использование и сегодня решают многие бытовые вопросы. Среди двигателей, работающих на основе электрического тока, можно выделить две основные категории: однофазные и трехфазные.
Пошаговая инструкция перемотки электродвигателя своими руками
Необходимо сразу предупредить, что без спецоборудования и навыков работы перемотка катушек будет, скорее всего, бесполезным занятием. С другой стороны отрицательный опыт это тоже опыт. Понимание сложности процесса является лучшим объяснением его стоимости.
Первый этап — демонтаж
Мы приводим алгоритм действий для асинхронных машин, он следующий:
- Отключаем привод от сети (380 или 220 В).
- Демонтируем электромотор с конструкции, где он был установлен.
- Снимаем задний защитный кожух охлаждающего вентилятора.
- Демонтируем крыльчатку.
- Откручиваем крепление торцевых крышек, после чего снимаем их. Начинать желательно с фронтальной части, после ее демонтажа ротор легко «выйдет» с тыловой крышки.
- Вытаскиваем ротор.
Данный процесс можно существенно облегчить, если использовать специальное устройство – съемник. С его помощью легко освободить вал двигателя от шкива или шестерни, в также снять торцевые крышки.
Съемник для демонтажа
Мы не будем приводить инструкцию по разборке коллекторного двигателя, поскольку особо не отличается. Строение электромашины данного типа можно найти на нашем сайте.
Этап второй — снятие обмотки
Очередность действий следующая:
- При помощи ножа снимаем бандажный крепеж и изоляционное покрытие с мест соединений проводов. В некоторых инструкциях рекомендуется зафиксировать схему соединений, например, сделав фотоснимок. Делать это особого смысла нет, поскольку это справочная информация и узнать ее по марке двигателя не составляет проблемы.
- Используя зубило, сбиваем верхушки проводов с каждого торца статора.
- Освобождаем пазы, используя пробойник соответствующего диаметра.
- Очищаем статор от грязи, копоти, лака пропитки.
Статор, освобожденный от обмотки
На этом этапе мы рекомендуем остановиться, взять корпус и отвезти его специалистам. Самостоятельный демонтаж позволит снизить стоимость восстановительных работ. Как уже упоминалось выше, без спецоборудования качественно перемотать катушки довольно сложно. Для понимания сложности процесса опишем его технологию, что позволит облегчить выбор.
Перемотка статора (финальная фаза)
Процесс состоит из следующих действий:
- Установка изоляторов в каждый паз (гильзование).
- Толщина материала и его характеристики подбираются по справочнику.
- Определяются обмоточные данные по марке двигателя.
- На специальном станке производится намотка необходимого количества витков всыпных катушек. В сети можно найти фото и параметры самодельных ручных станков, но качество их работ довольно сомнительное.
Станок для намотки всыпной обмотки - Катушечные группы укладываются в пазы, после чего производится их обвязка и соединение. Эти процессы довольно сложные и выполняются вручную.
- Осуществляется пропитка. Для этого корпус нагревается до температуры 45°С – 55°С и полностью погружается в емкость с пропиточным лаком. Заливать лаком провода не имеет смысла, поскольку в этом случае все равно останутся пустоты.
- После пропитки корпус помещают в специальную камеру, где осуществляется сушка при температуре 130-135°С.
- Финальное тестирование катушек омметром.
- Сборка и пробный запуск (если в ремонт передавались на только корпус, а и остальные детали и крепления).
Если на восстановление сдавался только корпус, рекомендуем перед тем, как включать мотор, проверить катушки.
Устройство оборудования
Несмотря на то что однофазный асинхронный электродвигатель имеет две фазы, работает из них только одна. Это обусловлено техническим устройством и другими важными аспектами. В настоящее время производители уделяют большое внимание повышению мощности всех установок и снижению размеров. Все это происходит за счет внутренних деталей. Основные элементы электродвигателей:
- статор;
- ротор;
- корпус;
- крепежные детали;
- проводка;
- некоторые модели также оснащаются электронными датчиками и системами контроля.
Главным преимуществом однофазных моделей остается их простота конструкции. Все детали легки в изготовлении в производственных условиях, быстро собираются. Главными недостатками остается довольно низкий коэффициент полезного действия.
Принцип работы
Принцип действия однофазного асинхронного электродвигателя заключается в создании пульсирующего магнитного потока от протекания электрического тока по основной обмотке статора, если рассматривать вариант пуска от вспомогательного витка. Таким образом, подключение однофазного мотора к сети мы рассмотрим на примере одно витка.
Рис. 2. Принцип формирования магнитного потока в статоре
Как видите на рисунке выше, переменный электрический ток, протекая по проводнику, согласно правила буравчика, создает концентрические магнитные потоки. При появлении максимума синусоиды магнитный поток также достигнет своего максимума. Однако в сети однофазного переменного электрического напряжения ток меняет свое направление движения в витке с частотой в 50 Гц. Это означает, что как только кривая пересечет ось абсцисс, ток будет протекать по витку обмотки в противоположном направлении и создаваемый ним магнитный поток получит противоположные полюса и направленность результирующего вектора:
Рис. 3. Формирование потока обратного направления
С физической точки зрения оба потока равнозначны, поэтому их смена с периодичностью 100 раз в секунду даст нулевой результат при сложении. Прямой магнитный поток окажется равным обратному:
Фпр = Фобр
Это означает, что если в таком поле окажется ротор электродвигателя, вращаться он не будет. 100 раз в минуту в нем произойдет смена магнитного потока, и короткозамкнутый ротор будет просто гудеть, оставаясь на месте. Однако ситуация в корне измениться, если возникнет импульс к начальному движению. В таком случае появиться скольжение, которое и приведет к постоянному вращению вала:
Sпр = (n1 — n2) / n1, где
- n1 – частота вращения магнитного поля однофазного электродвигателя;
- n2 – частота вращения ротора асинхронного электродвигателя;
- S – величина скольжения однофазного индукционного мотора.
При смене магнитного потока направление вращения и поля статора и ротора электродвигателя совпадут, поэтому скольжение получит иное выражение для вычисления:
Sобр = (n1 — ( — n2)) / n1, где
Попеременное пересечение стержней магнитными потоками разного направления создаст в них ЭДС, которая сгенерирует электрический ток в роторе и ответный магнитный поток. А он, в свою очередь, также вступит во взаимодействие с полем статора однофазного электродвигателя, как показано на рисунке ниже.
Рис. 4. Получение ЭДС в роторе
Как видите, чтобы подключить трехфазный электродвигатель, достаточно подать на него напряжение, но с однофазным такой вариант не сработает.
Для запуска мотора необходим первичный импульс, который на практике может быть получен посредством:
- раскрутки вала вручную;
- кратковременного введения пусковой катушки;
- расщепления магнитного поля короткозамкнутым контуром.
Из вышеприведенных способов сегодня первый используется только в лабораторных экспериментах, из практического применения он вышел из-за опасности травмирования оператора.
Недостатки однофазного тока
Теория и практика показывают, что однофазный ток не может самостоятельно заставить двигаться однофазный электродвигатель. Это связано с тем, что ток такого формата не создает магнитного поля, поэтому ротор не будет двигаться. Для этого в двигателях создаются две обмотки, расположенные под определённым углом друг к другу. Все однофазные двигатели 220 В используемые в бытовой технике, идентичны. На самом деле недостатки минимальны, так как использование таких моделей оборудования в значительной степени упрощает жизнь человеку.
Использование переменного тока позволяет подключать любые типы однофазных двигателей к простым розеткам. Можно снимать их с компрессора и ставить на газонокосилки или стиральные машины.
Подключение однофазного асинхронного двигателя
Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.
Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.
С пусковой емкостью
В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.
Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.
Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.
С рабочей емкостью
Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.
Схема обеспечивает хорошие характеристики при работе в номинальном режиме.
С обоими конденсаторами
Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.
Расчет емкостей
Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:
- Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
- Для пускового конденсатора: больше в 2,5 раза.
Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.
Принцип действия устройства
Электрические основы и физические аспекты очень важно знать, так как это позволит правильно запускать и ремонтировать оборудование. Несмотря на свой малый размер, электродвигатель очень опасен для человека при неправильной эксплуатации. Очень важно знать мощность оборудования для осуществления передачи крутящего момента, так как ее может быть недостаточно или в избытке. Принцип работы заключается в следующем:
- На статор подается ток, который создает магнитное поле.
- У магнитного поля есть своя частота, амплитуда и момент.
- Если у ротора отсутствует пусковой механизм, который будет его запускать, то двигаться он не будет даже при подаче тока.
- После включения пускового механизма ротор начинает двигаться и передает крутящий момент на вал.
Так как рассматриваются однофазные двигатели, то здесь есть дополнительные пусковые кнопки. Они включаются для запуска ротора, рекомендуется удерживать пусковую кнопку не более 3 секунд, чтобы не происходило перегрева. Сам мотор оснащен двумя обмотками: основной и дополнительной. Основная используется для создания двухфазного тока в момент включения кнопки. Впоследствии двигатель продолжает работать как однофазный.
Для надежности и защиты оборудования устанавливаются специальные тепловые реле. В случае превышения температуры выше допустимых норм все отключается от сети.
Это довольно важный элемент, который создает безопасные условия эксплуатации. Пожароопасные ситуации ликвидируются.
Сравнение однофазных и трёхфазных индукционных электродвигателей
1. Однофазные электродвигатели надёжны, просты в устройстве, экономичны для маленькой мощности, если сравнивать с трёхфазными.
2. Электрический фактор мощности однофазных электродвигателей низок, если сравнить с трёхфазными.
3. Несмотря на одинаковые размеры, однофазные электродвигатели производят около 50% на выходе, тогда как трёхфазные – меньше.
4. Стартовый крутящий момент также низок для асинхронных моторов / однофазных индукционных моторов.
5. Эффективность однофазных электродвигателей меньше, чем у трёхфазных.
Однофазные индукционные электродвигатели просты, надёжны и дёшевы для маленьких мощностей. Они в целом доступны для мощности в 1 киловатт.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Правила запуска
В этом аспекте проблем возникать не будет. Эти устройства устанавливаются практически на все типы бытовых устройств, поэтому достаточно стандартной бытовой розетки. В независимости от того, какая разновидность электродвигателя используется, ток нужен всегда переменный. Если используется малооборотный электромотор, то могут применяться другие типы источников энергии. Существует два основных типа пусковых систем:
- Запуск осуществляется за счет дополнительной обмотки. После достижения ротором требуемых оборотов она просто отключается и работает только основная обмотка.
- Используется во втором случае конденсатор, который подключается к дополнительной обмотке. Работает такая система постоянно.
Все типы рассмотренных однофазных электродвигателей 220 В взаимозаменяемы. То есть один и тот же тип мотора устанавливается на холодильник, стиральную машину, газонокосилку и так далее. В настоящее время при ремонте и техническом обслуживание нужно соблюдать основные правила безопасности. При любом нарушении изоляции следует проводить замену изоленты при выключенном устройстве.
Схемы подключения
Для получения базового импульса вращения могут использоваться различные схемы подключения. Со временем, некоторые из них утрачивали свою актуальность и сменялись более прогрессивными, поэтому далее мы рассмотрим наиболее эффективные, которые применяются и сейчас.
С пусковым сопротивлением
Так как в индукционных электродвигателях сопротивление обмоток имеет комплексную форму, вектор магнитного потока можно легко сместить, если в пусковую обмотку добавить сопротивление. Наличие активной составляющей даст необходимый угол сдвига между рабочими катушками однофазного электродвигателя и пусковой, от 15° до 50°, что и обеспечит разницу для начального вращения.
Рис. 5. Схема с пусковым сопротивлением
С конденсаторным запуском
В отличии от предыдущего способа, в схеме с конденсаторным пуском электродвигателя применяется емкостной элемент, который позволяет сместить электрические величины в основной и пусковой катушках на 90°, обеспечивая максимальное усилие.
Рис. 6. Схема с конденсаторным пуском
На практике пусковой конденсатор вместе с дополнительной обмоткой вводятся кнопкой пуска одновременно с подачей основного питания. Пусковая кнопка устроена таким образом, что контакт Cn возвращается пружиной в изначальное положение, сразу после окончания конденсаторного запуска.
С расщепленными полюсами
В отличии от конденсаторных двигателей, такой способ пуска предусматривает наличие особой конструкции статорного магнитопровода. В этом случае каждый полюс разделяется на два, один из которых комплектуется короткозамкнутым витком, изменяющим характеристики магнитного потока.
Рис. 7. Схема с расщепленными полюсами
Существенным недостатком этого метода пуска однофазного электродвигателя является постоянная потеря мощности и снижение КПД мотора. Поэтому его применяют только в электрических машинах до 100 кВт.
Проверка работоспособности
Поломки случаются с любым механизмом, и электрический мотор не является исключением. Определить поломки можно чаще всего внешним осмотром. Для проведения диагностики и более основательного изучения дефектов потребуется специальное оборудование и контрольно-измерительные приборы. Конечно же, диагностировать поломку можно подав пусковой ток, если мотор не работает, то пора его менять. Основные типы внешних признаков, указывающих на то что нужен ремонт:
- Появился запах гари.
- На корпусе потемнела краска из-за перегрева.
- Имеются повреждения корпуса.
В некоторых ситуациях исправить поломку можно своими усилиями. Нужно подключить оборудование к постоянному току, переменный в этой ситуации не подойдет. Далее, дать поработать двигателю около 10−15 минут. Если за это время он нагрелся, то причина может быть в следующем:
- дефекты у подшипников: поломки, вытекла смазка и другие факторы.
- высокая емкость конденсатора.
Во второй ситуации можно отключить конденсатор или понизить его ёмкость, что приведет к понижению температуры. В настоящее время рекомендуется за помощью обращаться в специализированные мастерские, так как самостоятельный ремонт не всегда бывает эффективным. Чтобы сделать однофазный двигатель 220 В низкооборотистым, также потребуется настройка на специальных стендах.
Особенности ремонта коллекторных приводов
У данного типа электромашин чаще возникают механические неисправности. Например, стирание щеток или засорение контактов коллектора. В таких ситуациях ремонт сводится к чистке контактного механизма или замене графитовых щеток.
Тестирование электрической части сводится к проверке сопротивления обмотки якоря. В этом случае щупы прибора двум соседним контактам (ламелям) коллектора, после снятия показаний производится измерение далее по кругу.
Проверка обмотки якоря коллекторного электродвигателя
Отображенное сопротивление должно быть примерно одинаковым (с учетом погрешности прибора). Если наблюдается серьезное отклонение, то это говорит, что имеет место быть межвитковое КЗ или обрыв, следовательно, необходима перемотка.
Обзор моделей
Среди отечественных поставщиков и производителей двухфазных электродвигателей 220v можно выделить серию АИР. Они отлично подходят для промышленных и бытовых нужд. Конструктивными особенностями можно назвать наличие фланцев и специальных лап крепления на корпусе. Они могут быть в комплекте по отдельности либо вместе. Цена не будет сильно отличаться от этого. На все варианты низкооборотных или высокобортных моделей действует гарантия около 12 месяцев, в зависимости от бренда. Разновидности корпусов:
- Алюминиевый — при высоте вращения шкива до 90 миллиметров.
- Чугунный — при высоте вращения шкива от 90 миллиметров.
Зная, для чего предназначен однофазный двигатель 220 В, можно сразу же выбрать подходящий вариант. Отдельного внимания заслуживает компания ААСО, которая базируется на территории Италии.
Предприятие реализует низкооборотные и другие типы электрических моторов нового поколения. При покупке нужно изначально проконсультироваться с ответственными менеджерами интернет-магазинов.
Обмоточные данные электродвигателей
Это справочные данные, поэтому самый надежный способ получить такую информацию – обратиться к соответствующим источникам. Эти данные также могут приводиться в паспорте к изделию.
В сети можно встретить советы, в которых рекомендуют при перемотке вручную пересчитать витки и измерить диаметр провода. Это трата времени. Значительно проще и надежней по маркировке двигателя найти всю необходимую информацию, в которой будут указаны следующие параметры:
- номинальные рабочие характеристики (напряжение, мощность, потребляемый ток, число оборотов и т.д.);
- количество проводов для одного паза;
- Ø проволоки (как правило, в данном показателе изоляция не учитывается);
- информация о внешнем и внутреннем диаметре статора;
- количество пазов;
- с каким шагом выполняется обмотка;
- размеры ротора и т.д.
Проверка и замена пускового конденсатора
Термоваккумная обработка увеличивает срок службы конденсатора, исключая возможность внутренней коррозии элементов. Чистая комната, с контролем влажности и температуры воздуха, высокопроизводительное швейцарское оборудование. Мы готовы к выпуску до 20 шт. Там, где на других завода работают люди, у нас автоматизированные станки. Быстрее, качественнее, надежней.
Наличие собственных тестовых лабораторий на все типы выпускаемой продукции позволяют дать дополнительную гарантию клиентам в качестве продукции. Завод активно участвует в тематических выставках, региональных тематических мероприятиях. Моторные конденсаторы производства ООО «Нюкон» серии К предназначены для соединения с обмотками асинхронных электродвигателей, питающихся от однофазной сети чаcтотой не более 60Гц, а также для перевода трехфазных двигателей на питание от однофазной сети.
В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.
В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети. В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций – как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.
В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.
Предельное напряжение на клеммах пускового конденсатора должно быть не более В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора. Для определения пусковой емкости Спуск. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется. Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп. Рис 1. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве.
При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов. Пользуясь данным сайтом и любым его сервисами, Вы подтверждаете свое согласие на обработку персональной информации.
Расположение завода:. Контакты Покупателю Пресс-центр О заводе. Спасибо за интерес, проявленный к нашей Компании. Версия для печати. Как показывает практика, на каждые Вт мощности электродвигателя требуется около мкФ. Область применения конденсаторов для асинхронных двигателей Таблица: Область применения конденсаторов для асинхронных двигателей рабочий пусковой Применение В схемах асинхронных электродвигателей В схемах асинхронных электродвигателей Тип подключения Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору В качестве Является фазосмещающим элементом Предназначение Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя Время включения В процессе работы электродвигателя В момент пуска электродвигателя Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
Приблизительный расчет для данного типа соединения производится по следующей формуле: Сраб. Рис 2. Подбор конденсаторной установки:. Номинальная мощность, кВАр. Построить маршрут к заводу из: м.
Перемотка якоря
Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:
- Для намотки применяется специальный станок, более сложной конфигурации.
- Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
- При помощи специального фрезерного станка производится нарезка коллектора.
Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей — пустая трата времени.