Главная » Строим дом » Рубрики » Электрика
Александр Короваев 29.09.2019
1141 Просмотр
С электричеством не шутят, но и боятся его не стоит. Если правильно понимать устройство электрических сетей, хотя бы на начальном уровне, то ничего страшного не произойдёт.
Обывателю, чтобы пользоваться электричеством без опаски, нужно знать несколько несложных для понимания вещей, в число которых входят понятия: фаза, ноль и заземление.
Что такое фаза многие знают, а вот что такое ноль и земля, в чем принципиальное отличие этих понятий – немногие.
Что такое «нуль» и «земля» согласно ПУЭ?
То, что мы привыкли называть «нулем» и «землей» в ПУЭ называется нулевым рабочим проводником (N) и нулевым защитным проводником (PE). Вот как они трактуются в нормативном документе:
1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
1.7.18.а Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.
Из этих формулировок понятно, что защитный нулевой проводник необходим для защиты от поражения электрическим током. То есть к нему должно заземляться электрооборудование, например, стиральная машинка, бойлер, котел и т.д. В то же время рабочий нулевой проводник необходим для питания оборудования, то есть по нему будет протекать ток.
В некоторых случаях допускается использовать «нуль» (PE) в качестве «земли», как это указано в ПУЭ 1.7.18.б. В этом случае провод становится совмещенным проводником, который сочетает функции нулевого защитного и нулевого рабочего проводников. Он будет называться PEN. Однако здесь есть один нюанс, который важно знать.
Дело в том, что согласно ПУЭ 1.7.83 «В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей». То есть нулевой защитный проводник («земля») должен идти непрерывно от щитка к розетке или осветительному прибору. Если мы, к примеру, посадим заземление на нуль, тогда «путь» прервется путем вынимания вилки из розетки. И если произойдет пробой, корпус остального оборудования, заземленного на этот провод, окажется под напряжением.
Далее в этом же пункте сказано: «В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением». Из этого следует, что «нуль» можно использовать в качестве «земли», если при его отключении, отключаются и все стальные проводники, находящиеся под напряжением. Осуществить такое в квартирных условиях довольно сложно.
- Технологии
Почему в США напряжение в сетях 110 В, а в России 220 В?
Как использовать ноль в качестве «земли»
Если в старой квартире нет заземления, то сделать его можно, используя для этих целей ноль. Для этого ноль в электрощите дома необходимо разделить на «защитный» и «рабочий». Для этих целей в электрическом щите устанавливается дополнительная шина для PE проводников, соединённая перемычкой с нулём.
При этом существует важное правило! Подключать, таким образом, электроприборы к защитному контуру можно только через специальный контакт. Использовать для этих целей обычный контакт заземления на электроприборах, категорически нельзя, поскольку обрыв нуля приведёт к тому, что металлические части электроприборов окажутся под опасным напряжением.
В таком случае лучшим вариантом безопасности станет установка УЗО — устройства защитного отключения. При утечке тока УЗО определит опасный потенциал и автоматически отключит электроприбор от сети 220 Вольт.
Принцип работы устройства защитного отключения основан на следующем:
- Грубо говоря, УЗО контролирует, сколько напряжения ушло через фазный провод, а сколько возвратилось через нулевой;
- Если «возврата» не было, то есть произошла утечка тока, то УЗО это увидит и мгновенно сработает (отключит электроприбор).
Существуют устройства защитного отключения различных номиналов, для установки на отдельные электроприборы, например, в ванной комнате, а также на весь дом или квартиру. Это очень важно учитывать при выборе УЗО, чтобы максимально обезопаситься от утечек опасного напряжения.
Как должно осуществляться заземление в трехпроводной сети?
На данный момент в большинстве новостроек укладывают именно трехпроводную сеть, в которой идет фаза, нуль и заземление (желто-зеленый провод). «Нуль» и «земля» присоединяются в щитке к одной заземляющей шине, но не под общий контактный зажим (ПУЭ 7.1.36). Затем заземление одним непрерывным проводом подводится к каждой розетке. У большинства современного электрооборудования уже есть третий заземляющий контакт на вилке, который обеспечивает заземление корпуса прибора при включении его в розетку.
Отсоединение проводов в щите
Этот метод можно использовать в любых схемах электроснабжения, а для его реализации достаточно индикатора напряжения с двумя щупами, даже старого советского ПИН-90:
- 1. отключается вводной автомат в электрощитке;
- 2. от заземляющей шины отсоединяются провода;
- 3. включается автоматический выключатель;
- 4. в распределительной или монтажной коробке индикатором производится поиск двух проводников, напряжение между которыми составит 220В.
Оставшийся проводник является заземляющим.
Вывод
Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.
Проверьте свои знания в электрике:
- Почему между фазой и нолем 220 В, а между фазами 380 В?
- Почему в США напряжение в сетях 110 В, а в России 220 В?
Техника безопасности при проверке
При работе с электрическими проводами необходимо соблюдать правила техники безопасности:
- Проверять напряжение с помощью приборов, а не ориентироваться только на цветовую маркировку. Бывают ситуации, когда электрики по невнимательности или незнанию произвели монтаж электропроводки, не соблюдая общепринятых условий подключения по цветам жил.
- До начала работ проверить визуально исправность и целостность кабеля.
- Не допускать соприкосновения проводов с мокрыми, горячими, маслянистыми предметами или поверхностями.
- В комплектных распределительных устройствах заводского изготовления проверку наличия или отсутствия напряжения производить с помощью встроенных стационарных указателей напряжения.
- Проверку в электроустановках с напряжением 35 кВт осуществлять с помощью изолирующей штанги путем ее соприкосновения с токоведущими частями. Наличие потрескивания и искрения свидетельствует о наличии напряжения.
- Не прикасаться к оголенным жилам электропроводки.
- Со стремянки разрешено работать с проводкой, если высота пролегания кабелей не превышает 3 м от пола. Запрещено ставить лестницы на различные подставки (ящики, бочки и т. п.).
Переменное напряжение — три фазы и ноль
Начать стоит с основ — с переменного напряжения и тока, его природы и принципа передачи к конечным потребителям. Тема переменного тока заслуживает отдельного рассмотрения, но для понимания фазы, нуля и земли на бытовом уровне выделим основные моменты.
Мощные генераторы электростанции вырабатывают напряжение в десятки киловольт. Затем через повышающие и понижающие трансформаторы электроэнергия приходит в дома с привычными нам параметрами 220 Вольт 50 Герц. Последний промежуточный элемент между электростанцией и домом — понижающий распределительный трансформатор. Разбираться в особенностях его работы сейчас не будем. Но для понимания, заменим его, все промежуточные трансформации и генератор на электростанции обычным трехфазным генератором на 220 Вольт.
Трехфазный генератор упрощенно состоит из ротора (вращающегося магнита) и трех обмоток статора, смещенных друг относительно друга на 120° (три фазы — отсюда и пошло название фаза, обозначающее вывод начала обмотки). Начала и концы обмоток трехфазного генератора принято обозначать буквами A, B, C и X, Y, Z. Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Концы обмоток соединяются звездой в один узел, называемый нейтральной или нулевой точкой. Тот же принцип и в понижающем распределительном трансформаторе — концы обмоток соединяются в нулевой точке, а начала обмоток — это три фазы с линейным напряжением 380 Вольт.
Ротор генератора, вращаясь, создает электродвижущую силу, которая при условии, что цепь замкнута, заставляет свободные электроны в проводах направленно перемещаться от зоны с большим потенциалом (избытком электронов) к зоне с меньшим потенциалом (недостатком электронов). Давайте условно остановим время и рассмотрим что происходит с напряжениями в каждой фазе. Нам известно, что напряжение в розетке между фазой и нулем 220 Вольт. Это действующее значение напряжения, и после перевода в амплитудное получим 312 Вольт. Примем, что это напряжение на выводе A генератора (или трансформатора). Для определения напряжения на двух оставшихся выводах также условно примем, что потребление по трем фазам симметричное. Тогда нулевой провод фактически не нужен, поэтому отсоединим его от генератора (трансформатора) — в жизни эта ситуация называется обрывом (отгоранием) общего нуля. Но ноль у нас никуда не делся. Важно понимать, что ноль — это не просто четвертый провод от трансформатора. Ноль это в первую очередь общая точка соединения трех фазных нагрузок. И ток в идеале не течет от фазы к нулю трансформатора и обратно. Ток течет между тремя фазами если нагрузки симметричные. И лишь когда нагрузки несимметричные (а в реальной жизни так всегда) только часть тока по четвертому проводу возвращается в трансформатор.
Допустив, что нагрузка у нас симметричная, а ноль — точка соединения начал обмоток трансформатора после нагрузок, теперь можно найти напряжения на оставшихся дух фазных выводах и понять суть переменного напряжения. Так как ток течет, точнее движение свободных электронов происходит между тремя фазами, то если напряжение на выводе А 312 Вольт (примем со знаком «+», напряжение на выводе — это разность потенциалов между началом и концом обмотки (нулевой точкой)), то на оставшихся двух выводах B и C должно быть (оно и есть) по -156 Вольт. То есть электроны в цепи начинают движение от области с потенциалом +312 Вольт к областям с потенциалами -156 Вольт. Если помните, мы остановили время и рассмотрели конкретный момент. Отключим остановку времени. Теперь ротор крутится и значения напряжений на выводах изменяются по синусоиде. Электроны все также движутся межу фазами, но периодически изменяют направления.
Завершая краткий экскурс в переменный ток хочется отметить, что говоря о движении электронов, нужно понимать не прохождение огромных расстояний со скоростью света, а скорее миллиметры (сантиметры). Электроны медлительные и они в проводах не перемещаются со скоростью света. Распространение со скоростью света происходит лишь у электрического поля, которое взаимодействует со всеми свободными электронами на любом участке провода.
Основные понятия.
Сила тока— скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.
где
I— сила тока,q—величина заряда (количество электричества),t— время прохождения заряда.
Плотность тока— векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.
где
j
—
плотность тока
,
S
—
площадь сечения проводника.
Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.
Напряжение
—
скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.
гдеA—полная работа сторонних и кулоновских сил,q— электрический заряд.
Электрическое сопротивление— физическая величина, характеризующая электрические свойства участка цепи.
гдеρ— удельное сопротивление проводника,l—длина участка проводника,S—площадь поперечного сечения проводника.
Проводимостьюназывается величина, обратная сопротивлению
где G—проводимость.
Как отличить ноль от заземления подручными средствами
При ремонте или частичной замене электропроводки, электрику приходится сталкиваться с определением фазы, ноля и заземления в распаячных коробках. С определением фазы проблем никаких нет, достаточно воспользоваться отверткой-индикатором. Когда проводка проложена двумя жилами, без земли, естественно, вторая жила является нулем. Однако при ремонте проводки с тремя токоведущими проводниками, зачастую возникает вопрос: где рабочий ноль, а где защитный. Ведь по электрическим свойствам оба проводника идентичны – можно подключить даже приличную нагрузку к паре фаза-земля и не заметить разницы. При измерении напряжения мультиметром между парами фаза-ноль и фаза-земля примерно одинаковые напряжения.
Для тех, кто в танке: если вы думаете, что можно проверить мультиметром или лампой два провода из трех и там, где будет напряжение, это и есть фаза с нулем – вы заблуждаетесь! Между фазой и заземлением (занулением) напряжение также составляет около 220 вольт!
Если проводка современная, с цветной маркировкой проводов – дело упрощается. Обычно фаза маркируется коричневым или белым (при отсутствии коричневого) проводниками, ноль – синим или белым (с синей полосой). Заземление по современным стандартам маркируется желтой изоляцией с зеленой полосой. Однако здесь два НО: далеко не факт, что монтажники были в курсе об общепринятой цветовой маркировке или использовали провода для трехфазной сети с черным, коричневым и синим (белым или желтым) проводниками. Поэтому хорошему электрику не следует безоговорочно ориентироваться на цвета проводников, смонтированных другими электромонтажниками.
Видео описание
Заземление вместо нуля в розетке. Что будет.
Поэтому разберитесь с отсутствием «нуля» в вашей электропроводке. Если «рабочий 0», идущий к электрической розетке поврежден, найдите место повреждения нулевой цепи.
Вместо поврежденного «нуля» можно использовать провод заземления. Для этого обязательно делается новая маркировка:
- на нулевой линии;
- в розетках;
- в электрическом щитке.
Духовой шкаф и посудомоечная машина должны подключаться к разным группам. Каждая линия должна быть оснащена отдельным защитным автоматическим выключателем. УЗО можно поставить общее на всю электрическую цепь.
Заземляющий проводник тоже один на всех, его допускается брать с другой линии.
Чем опасно повреждение нулевого провода
Перегрев нулевых проводов из-за плохого контакта.
Ноль повреждается при механических воздействиях, коротких замыканиях, некачественном подключении или в результате старости проводки. Обрыв нейтрали:
- PEN-проводник в кабеле питания – остается один заземляющий контур, который визуально не заметно;
- сгорание проводника в распредщитке – фазные проводники перекашиваются, показатель напряжения увеличивается до 380 В;
- обрыв в щитке квартиры – в розетках остается вторая фаза, бытовая техника от них не запитывается.
Заземляющие проводники заземлители
Самым распространенным цветовым обозначением изоляции заземлителей являются комбинации желтого и зеленого цветов. Желто-зеленая раскраска изоляции имеет вид контрастных продольных полос. Пример заземлителя показан далее на изображении.
Желто-зеленая раскраска заземлителя
Однако изредка можно встретить либо полностью желтый, либо светло-зеленый цвет изоляции заземлителей. При этом на изоляции могут быть нанесены буквы РЕ. В некоторых марках проводов их желтый с зеленым окрас по всей длине вблизи концов с клеммами сочетается с оплеткой синего цвета. Это значит то, что нейтраль и заземление в этом проводнике совмещаются.
Для того чтобы при монтаже и также после него хорошо различать заземление и зануление, для изоляции проводников применяются разные цвета. Зануление выполняется проводами и жилами синего цвета светлых оттенков, подключаемыми к шине, обозначенной буквой N. Все остальные проводники с изоляцией такого же синего цвета также должны быть присоединены к этой нулевой шине. Они не должны присоединяться к контактам коммутаторов. Если используются розетки с клеммой, обозначенной буквой N, и при этом в наличии нулевая шина, между ними обязательно должен быть провод светло-синего цвета, соответственно присоединенный к ним обеим.
Две схемы подключения
Одинаковый обрыв нуля, а последствия такие разные
Для понимания роли «Ноля» и «Земли» нужно немного вникнуть в суть способов доставки электроэнергии до конечных потребителей и отличий последних.
Следует упомянуть, что электро-системы бывают линейные и фазные. Линейные используются в промышленной сфере деятельности, где требуются повышенные мощности (380В), фазные существуют для использования их в быту (220В). И том и в другом случае схемы подключения используют три провода. Только для линейных (380) в каждом из трех проводов присутствует фаза, а бытовом варианте (220В) есть Фаза, Ноль и Земля.
Для безопасности каждая система использует свои схемы подключения. Промышленные сети рассматривать не будем, а вот бытовые изучить следует, здесь используются две схемы:
- TT – полное заземление
- TN-C-S – совместное подключение земли и нуля, после потребителя питания
Используемы схемы подключения: 1. На ноль, 2. На землю
Чтобы было более понятно, расшифруем аббревиатуру:
- Т – земля
- N – нейтраль
- S — раздельный, самостоятельный
- C – объединять
- L – фаза
- PE – защитный
- PEN — объединенный
Эти две схемы используются, однако следует указать ещё на одну существующую схему TN-C – это старая, но до сих пор действующая система, используемая в большинстве домов «старого» фонда, которой присуща аббревиатура PEN.
В ней Ноль и Земля совмещены (PEN) на всём протяжении. Такие сети не совсем безопасны, особенно для электроприборов. Монтировались они в советское время, бытовых приборов использовалось немного, а потому проектировщики не видели смысла в излишней трате на электропроводке ради пары десятков телевизоров (нагрузки были небольшие), — 30% экономия! На промышленных предприятиях заземление делалось отдельно.
Фаза разноцветье в ассортименте
Именно через фазу проходит напряжение
А значит, работать с этим видом кабеля нужно особенно осторожно. Данный провод обозначается буквой l в электрике, что является сокращением слова Line
В трехфазной сети используется следующее обозначение проводников: l1, l2, l3. Иногда вместо цифр применяются английские буквы. Тогда получается la, lb, lc.
Про цветовое обозначение фаз можно говорить много. Понятно одно: фазный проводник может быть какого угодно цвета, кроме желтого, зеленого и синего. Однако в России нашли свой ответ на вопрос, какого цвета фаза. Согласно ГОСТ Р 50462-2009, рекомендуется использовать черный или коричневый цвет. Однако этот стандарт носит лишь рекомендательный характер. А потому производители не ограничивают себя определенными цветовыми рамками. Например, красный и белый встречаются гораздо чаще коричневого. Яркие цвета – розовый, бирюзовый, оранжевый, фиолетовый также часто присутствуют в наборе
Считается, что яркие цвета защитят от опасности, привлекут внимание мастера. Все-таки с напряжением не шутят