В действительности мы можем встретить разные виды полупроводящих ключей. Их применяют для соединения питания нагрузки или равномерного управление электростатическим полем и электротоком.
Из подобных приборов можем выделить симисторы. Чаще всего их используют в регулировании иллюминации, бытовых электроприборах, производственных генераторах.
В данной статье мы представим вам два способа проверки пригодности симистора и тиристора: мультиметром и устройством собственного изготовления.
Назначение и устройство
Симисторы – полупроводящий переключатель, который можно открыть сигналом тока через ведущий электорат.
С целью закрыть симисторы необходимо разорвать ток в цепочке либо применить противоположное напряжение.
Принцип его работы идентичен работе тиристора. Единственная разница в том, что симисторы состоят из двух тиристоров, которые соединенные и работают одновременно.
Определение на графике вы можете посмотреть ниже.
По обозначению их обычно применяют в радиорелейном режиме – если говорить проще на «подключение» и «выключении», такие реле считают полупроводящими.
В отличие от электро механизированного, он работает намного быстрее, отсутствуют связь и как результат большая устойчивость и надежность.
Главной необходимостью продолжительного использования является гарантированный температурный режим и насыщенность.
Схема для проверки тиристоров
У каждого радиолюбителя должна быть своя маленькая лаборатория. Но что делать, если денег не хватает даже на простенькую паяльную станцию? В этой статье пойдет речь о том, как же сделать из доступных радиоэлементов нехитрый приборчик для проверки тиристоров, который добавится в вашу копилку полезных устройств для радиолюбителя. Теперь вы уже точно будете знать, пробит ли ваш тиристор или все-так жив.
Схема для проверки тиристоров
Тиристор относится к классу диодо в. Его можно провери ть с помощью мультиметра, но если руки растут из нужного места, то конечно проще собрать приборчик для проверки. А вот и схемка:
Схема состоит из:
— трансформатора, который выдает нам на выходе 5-10 Вольт
— диод Д226, ну что было под рукой. Можно использовать любой маломощный.
— электролитический конденсатор на 1000 мкФ х 25 Вольт
— тумблер (S1) на три положения, одно из которых нейтрально (N)
— кнопочка с возвратом (S2)
— резистор на 47 Ом
— лампочка накаливания на 6,3 Вольта
Сборка и описание
Итак, начнем с того, что нам понадобится фольгированный текстолит. Я достал у себя в загашнике текстолит не первой свежести. Для того, чтобы не париться с разводкой элементов, травлением платы и еще различным геморроем, для простых схем я тупо нарезаю квадратики и делаю простейшую самопальную плату. Поверьте, так намного быстрее, если под рукой нет готовых китайских макетных плат. Для этого беру пилку по железу, железную линейку и выцарапываю неглубокие канавки:
Лишь бы не было меди между квадратиками. Кто-то умудряется делать специальные заточки из пилки по железу, но они мне не нравятся, так как быстро тупеют и их приходится затачивать.
Далее все это дело надо зашкурить мелкой шкуркой:
Следующим шагом подбираем трансформатор. Трансформатор подбираем таким образом, чтобы он выдавал переменное напряжение какого-либо значения от 5 и до 10 Вольт. У меня трансформатор на выходе вторичной обмотки выдает 12 Вольт. Пришлось отмотать половину витков со вторичной обмотки. Теперь он выдает 6 Вольт. Кто не знает как устроен трансформатор, можете прочитать в этой статье. Делаем отверстия под трансформатор, монтируем его на край нашей самопальной печатной платы и выводим на квадратики его выводы со вторичной обмотки. Для того, чтобы залудить квадратик, нам достаточно его чуточку проканифолить и добавить капельку припоя:
Примерно вот так выглядит трансформатор на плате:
А вот и законченная конструкция в сборе. Осталось только найти для нее подходящий корпус.
Как проверять тиристоры
Схема работает следующим образом:
1)Цепляем проверяемый тиристор Т1 к проводам схемы.
2)Переключаем тумблер S1 с нейтральным положением на значок «~», нажимаем кнопочку S2.
3)Лампочка при нажатии загорается, при отпускании тухнет.
Таким образом мы проверили тиристор на переменном токе.
4)Далее ставим тумблер S1 в положение «=»
5)Нажимаем кнопку S2, лампочка зажигается, отпускаем кнопку S2, лампочка все равно продолжает гореть.
Так мы проверили тиристор на постоянном токе.
Если все операции прошли успешно, значит тиристор у нас в полном здравии.
А вот и видео, кому лень читать вышестоящий текст. Здесь я проверял тиристор КУ202Н.
Читатели мои дорогие, читайте дальше )) Выложил статью про LED, вы наверное даже не знали о нем столько!
Способы проверки
Для исследования ухудшения работы электронного макета необходимо поочерёдно проверить его составляющие.
Для начала нужно сосредоточиться на силовых цепочках, конкретнее каждому из полупроводящих ключей. Чтобы проверить симистор и тиристор стоит использовать один из методов:
- мультиметром;
- батарейкой с лампочкой;
- на стенде.
Для исследования нужно отсоединить составляющую, так как во время анализа разных элементов электронных моделей на пригодность, не извлекая из устройства, существует риск неточного диагностирования.
К примеру сказать, вы заметили замыкание не составляющей, которая диагностируется, а связанного с ним в цепочке синхронно.
При любых условиях у вас есть возможность диагностировать симисторы и тиристоры на устойчивость не выпаивая, а в случаи наличия неисправности – извлечь и сделать расчеты заново.
Тест на пробой
Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:
- Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
- Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
- Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.
С помощью мультиметра
Если вы хотите проверить симисторы на пробивание при помощи тестера необходимо изменить систему устройства на акустический режим.
Стандартное местоположение приёмопередатчика, вы можете увидеть на изображении снизу. А1 и А2 – это электросиловые выводы, благодаря которым ток проходит в нагрузку, а G – это главный электрод.
Так как приёмопередатчик имеет свойство разниться, необходимо его изучить в описании симистора.
Для того чтобы проверить деталь на пробитие, необходимо дотронуться щупами выводов А1 и А2, в случаи исправности детали на экране обозначится «1» или 0L, в случаи наличия пробития – величина приближенная к 0.
В случаи отсутствия КЗ между выводами А1 и А2 необходимо просмотреть главный электрод.
Сперва необходимо дотронуться щупами до какого-нибудь силового выводка и главного электрода, значения должны быть невысокими 80-200.
Если вы хотите проверить, могут ли размыкаться симисторы, необходимо замкнуть на короткое время его главный электрод с одним из выводов мультиметра, таким образом, вы приложите к нему ток.
Инструкцию для проверки на примере тиристора и симистора вы можете посмотреть далее.
После убирания напряжения с главного электрода – симисторы можно замкнуть. В связи с тем, что хоть самый малый ток обязан протекать, для того чтобы поддерживать проводящие условия.
Подобные свойства могут быть и в способах, которые мы рассмотрим дальше.
Проверка мультиметром
Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.
Что нужно, чтобы проверить тиристор мультиметром:
- Подцепить черный щуп с минусом к катоду.
- Подцепить красный щуп с плюсом к аноду.
- Один конец выключателя соединить с разъемом красного щупа.
- Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
- Быстро включить и отключить выключатель.
- Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
- В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
- Если перекидывание щупов не помогло, то тиристор неисправен.
Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.
Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели
С помощью батарейки с лампочкой
Данным способом вы можете проверить симисторы в случаи отсутствия мультиметра, всего лишь с помощью лампочки. Модель проверки данного способа вы можете увидеть далее.
В случаи проверки симистора батарейкой с лампочкой необходимо извлечь резистор R1 из цепочки. Для этого необходимо применить 3 подключённые поочерёдно пальчиковые батарейки или крону.
В случаи сборки портативного тестера по данной схеме, вы имеете возможность вмонтировать кнопку без фокусировки с контактами, приведенными на модели.
При условии, что вы не собираетесь изготовить данное устройство, необходимо непродолжительно дотрагиваться до главного электрода проводом, как вы уже видели в методе с мультиметром.
Другие варианты проверки
Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.
Чтобы проверить устройство тестером нужно следовать следующей схеме:
- Проверка тимистора с помощью омметра Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
- Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
- Если подачи питания совсем нет, то устройство работает неправильно.
- Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.
Читать также: Как сделать вертолет из бензопилы
Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:
- Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
- Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.
Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).
Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.
Простой испытатель тиристоров и симисторов
В настоящей статье представлен простой прибор, требующий для своего создания совсем немного деталей. С его помощью можно быстро проверить работоспособность тиристоров и симисторов.
Общие положения
Отдельно взятый транзистор можно проверить на функционирование с помощью простого аналогового омметра. Проверить тиристор или симистор несколько сложнее. Здесь представлено описание схемы устройства, с помощью которого можно проверить и оценить основные параметры как тиристоров, так и симисторов. Прежде, чем приступить к описанию схемы испытателя, рассмотрим кратко, что же такое тиристор и симистор.
Тиристор – управляемый диод. В направлении запирания (как и через обычный диод) ток не протекает, так как на катоде (отмеченном на схемах остриём стрелки), относительно анода, напряжение имеет положительный знак. Меняем полярность приложенного к тиристору напряжения (плюс – к аноду, минус — катоду), а он и не думает открываться, в отличие от диода, тиристор всё ещё закрыт, заперт. Стоит теперь подать открывающее напряжение (которое, в свою очередь вызовет открывающий ток) на управляющий электрод, как тиристор моментально открывается (ток нарастает очень быстро, носит характер удара, пробоя). Теперь, если даже убрать управляющий ток из цепи управляющего электрода, тиристор останется в проводящем состоянии до тех пор, пока, протекающий через него ток, уменьшится до величины меньшей некоторого определённого значения, называемой током закрывания или током прерывания: тиристор закроется. Теперь тиристор можно открыть только новой порцией тока в цепи управляющего электрода.
Симистор – не что иное, как сдвоенный тиристор: два тиристора, включенных параллельно друг другу, только “навстречу” и с одним общим управляющим электродом, позволяющим производить управление током (токами), текущим(и) в обоих направлениях (переменным током). В необходимый момент времени, на управляющий электрод симистора подаётся импульс тока и симистор открывается. Когда (переменный) ток уменьшается, переходит через нуль, чтобы сменить затем свою полярность, симистор автоматически закрывается. Теперь, только следующий импульс тока в цепи управляющего электрода откроет симистор.
Схема
Представленная здесь схема тестера позволяет проверять только вышеназванные функции тиристоров и симисторов. Если переключатель S1 находится в положении, указанном на схеме Рис.1, то конденсатор С2 заряжается через резистор R1 и диод D2 до напряжения, близкого к напряжению батареи питания. Конденсатор С1 разряжен, так как диод D1 в этом направлении ток не проводит, заперт. Если тиристор подключен так, как указано на схеме (Рис.1), то светодиоды D4 и D6 не будут светиться. Стоит теперь кратковременно нажать на кнопку ST2, как в цепи управляющего электрода тиристора, через резистор R5, потечёт управляющий ток, который приведёт к открыванию тиристора. Зажжётся светодиод D4. Светодиод D6 останется потушенным, поскольку диод D5 включен в непроводящем направлении. Если теперь кратковременно выключить S1 (перевести переключатель в соседнее “холостое” положение), чтобы перевести его в другое положение (для смены полярности, например), как сразу погаснет D4. Коротким нажатием на кнопку ST2 снова подаём управляющий импульс от заряженного конденсатора С2 через резистор R5 на управляющий электрод тиристора. Этот импульс теперь не должен привести к открыванию тиристора, так как, последний подключен к источнику питания в непроводящем (запирающем тиристор) направлении (из-за смены полярности).
Поведение симистора, в этом случае, отличается от поведения тиристора: симистор и в этом случае, откроется, будет проводить ток. В зависимости от того, какую полярность будет иметь питающее напряжение, симистор будет открываться при нажатии на кнопки ST2 или ST1. Конечно же, после смены полярности питающего напряжения, следует немного подождать, чтобы успели зарядиться соответствующие конденсаторы, а уж потом жать на кнопки. С2 заряжается только в указанном на схеме (Рис.1) положении переключателя S1, С1 — только в нижнем по схеме его положении.
Конструкция
В соответствие с принципиальной схемой, размещайте детали устройства на монтажной плате. Особенностей монтажа нет, так как нет чувствительных (к наводкам и т. п.) элементов. Конструкция выполнена таким образом, что вместе с батареей питания помещается в небольшом корпусе. Три вывода для подключения тестируемых тиристоров или симисторов выполнены гибким изолированным проводом с использованием зажимов (например, типа “крокодил”).
Как проверять тиристоры и симисторы тестером и мультиметром?
- Подключение электрооборудования через оптопару с помощью управляющего тиристора позволяет управлять определёнными процессами в материнской плате компьютера, а также защитить её от перегрузок, которые могут привести к плачевным последствиям. В этом случае он служит своеобразным предохранителем, который отключает систему в нужный момент.
- В регуляторах мощности он включается в нужную ветвь выпрямителя. Изменяя импульсы питания двигателя, он регулирует промежутки подачи электропитания, для устойчивой мощности на низких оборотах движка.
- Частое применение симисторов наблюдается в регуляторах мощности для индуктивной нагрузки, где они управляют диапазонами частот и не только.
- Тиристорный регулятор громкости стабилизирует перепады напряжения, которые возникают в процессе работы музыкальных центров и прочих нагрузок, требующие стабилизации определённых режимов.
- Вентиляторные стабилизаторы на тиристорах регулируют функциональные характеристики не только исключая перегрев, но и соблюдая нужное количество оборотов.