Легкоплавкие сплавы: сплав Розе, Вуда и другие

Поскольку настоящий сайт посвящен металлографии, то естественно, что здесь нас интересует применение сплава Вуда в металлографическом препарировании, т.е. пробоподготовке. Каким образом он используется и какова его структура?

Сплав Вуда в Интернете представлен на многих сайтах. Как правило, информация на них повторяется. Приведен состав, физические свойства, история создания. Отмечается его низкая температура плавления. При этом упоминаются другие легкоплавкие сплавы. По данным Википедии сплав Вуда — тяжелый легкоплавкий сплав, изобретенный в 1860 году английским инженером Барнабасом Вудом Температура плавления 68,5 °C, плотность 9720 кг/м³. Состав (мас.%): олово — 12,5; свинец — 25; висмут — 50; кадмий — 12,5. Применяется в прецизионном литье, в операциях изгиба тонкостенных труб, в качестве выплавляемых стержней при изготовлении полых тел способом гальванопластики, для заливки металлографических шлифов, в датчиках систем пожарной сигнализации, в качестве низкотемпературной нагревательной бани в химических лабораториях и др.

Металлографическое применение и структура сплава Вуда в Интернете рассматриваются мало. Нет и иллюстраций.

Истоки возникновения сплава

Своим появлением и названием этот легкоплавкий сплав тяжелых металлов обязан американскому стоматологу Барнабасу Вуду, открывшим его состав в 1860 году. Следует отметить, что сам факт получения легкоплавкого сплава не был чем-то уникальным, так как еще в 1701 году Ньютон получил аналогичный сплав, но без применения кадмия. Так у Ньютона сплав состоял на 50% из висмута (Bi), 31,2% из свинца (Pb) и 18,8% из олова (Sn).

У Вуда же мы имеем Bi около 50%, около 25 % Pb, и по 12,5% Sn и, внимание, кадмия (Cd). Правда, сплав Ньютона имеет температуру плавления 97 градусов Цельсия, а сплав Вуда – около 67. Вот были у Вуда проблемы со свинцом и оловом, а вот с кадмием видно, по какой-то причине, проблем не было, вот он и заменил последним свинец и олово. И вот был получен сплав, который при нормальной температуре находится в кристаллическом состоянии, но уже в горячей воде становится жидким

[contents]

(см. видео).

По-видимому, именно сравнительно низкая температура плавления и сделала этот сплав и его изобретателя таким известным. Ведь до этого были известные легкоплавкие сплавы Rose (1772) и D’Arcet (1775) имели температуру плавления 95 градусов Цельсия. Снижение же температуры плавления на 26% несомненно давало возможность для весьма существенной экономии энергии, со всеми вытекающими, особенно с учетом областей применения сплава Вуда.

Паять и лудить — сплавом «вудить»

В кругу радиолюбителей и электронщиков сплав Вуду нашел применение для выполнения пайки и лужения, и вот почему. Лужение, как известно, заключается в нанесении тонкого слоя олова на другой металл, защищая при этом металл от окисления и коррозии. А как мы узнали выше, сплав Вуда – это сплав, содержащий в своем составе олово. Кроме легкоплавкости сплав Вуда обладает хорошей текучестью, которая позволяет ему равномерно растекаться по поверхности и заполнять малейшие щели. Для того, чтобы выполнить лужение дорожек на печатной плате необходимы: вода, зерна или стержни самого сплав, лимонная (или паяльная) кислота. Лужение с помощью сплава Вуда происходит следующим образом (см. видео, правда в нем идет речь о сплаве Розе, но для сплава Вуда оно тоже подойдет с небольшим уточнением):

1. В емкость заливаем воду (или глицерин), нагревают ее, замеряя температуру, доводят до температуры точки плавления, т.е. около 68,5 градуса Цельсия.

2. В горячую (очень горячую, но не обязательно кипящую) воду чуть-чуть добавляется лимонная кислота.

3. Затем в емкость укладывают предварительно почищенную плату, которую необходимо лудить и на медные дорожки платы выкладывают несколько кусочков сплава Вуда. Воду нагревают, сплав нагревается и переходит в жидкое состояние.

4. Тампоном, а лучше деревянной или пластиковой лопаткой выполняют лужение дорожек путем растирания капель жидкого сплава по дорожкам платы.

5. После лужения покрывают плату канифолью (флюсом) и моют.

Описанный способ лужения относиться к горячим, с нанесением покрытия растиранием. Другим горячим методом нанесения является погружение. Но в этом случае, понятно используется ванна со сплавом, для которой требуемое количество сырья намного больше, чем для метода с растиранием.

При пайке, вернее выпаивании элементов из плат – процессоров и микросхем, разъемов и других деталей – сплав Вуда хорош тем, что его температура плавления намного меньше температуры плавления пластика корпусов деталей. Следовательно, не нужно опасаться, что при выпаивании (или запаивании) пластиковый корпус будет поврежден. Конечно, все операции пайки в любом случае нужно делать максимально осторожно и внимательно. Паять этим сплавом можно различные металлы и сплавы (медь, и никель, алюминий, бронзу и латунь), а также изделия из драгоценных металлов.

В целом сплав Вуда значительно облегчает процесс лужения, что очень важно для новичков в этом деле.

Применение сплава Вуда в пробоподготовке

Для металлографического исследования надо сделать шлиф, т.е. поверхность образца, которая рассматривается в микроскоп, должна представлять собой зеркало. Если образец достаточно велик, то его обработка не представляет проблем. После отрезки его зачищают на шлифовальном круге, потом на шкурках, пастах и окончательно полируют. При этом получают зеркальную поверхность. Но что делать, если надо увидеть, например, структуру проволоки в поперечном сечении или тонкий (в несколько микрометров) слой на поперечном шлифе образца, или структуру металлического порошка? Просто так не отполируешь. Проволока согнется, если приложить усилие при обработке, порошок надо как-то превращать в компактный материал, а тонкий слой «завалится», т.е. не будет плоским, а превратится в закругление и не будет виден в микроскоп. Это показано на рисунке 1.

Рисунок 1. Завал кромки образца; 1 — кромка образца, которая находится ниже фокуса; 2 — участок, находящийся в фокусе; 3 — участок, находящийся выше фокуса; 2000х.

Поэтому площадь образца надо искусственно увеличить. Для этого на медную пластину ставят оправку (кольцо высотой порядка 1 см), внутрь нее помещают образец, а свободное пространство заливают расплавленным сплавом Вуда. Поскольку температура его плавления невелика, то структура образца в результате этого не изменится. Если же образец относится к легкоплавким сплавам, то вместо сплава Вуда применяют пластмассы или эпоксидную смолу, которые затвердевают при комнатной температуре. Пример заливки образца сплавом Вуда и пластмассой показан на рисунке 2. При таком способе приготовления шлифа край образца будет хорошо виден.

аб

Рисунок 2. Образец, залитый в сплав Вуда (а), пластмассу (б).

Образец, изготовленный с заливкой, будет также «в резкости» по всей поверхности (рис.3).

Рисунок 3. Образец, приготовленный с заливкой сплавом Вуда (углеродистая сталь, обработка компрессионной плазмой); 2000х.

Краткие характеристики сплава

Выпускается сплав Вуда в виде серебристо-белого цвета круглых стержней или капелек-гранул. Предел прочности на разрыв составляет около 45 МПа, относительное удлинение 7%, твердость по Бринеллю 10,5 единиц, плотность 9720 кг/м3. Срок хранения слитков сплава – 3 года.

Металлографические исследования сплава показывают, что компоненты, из которых он состоит, не растворяются друг в друге и не образуют химических соединений. Структура сплава – эвтектическая, включающая в себя светлые дендриты твердого раствора, содержащие в себе висмут, и темную сложную эвтектику (содержащую в себе все четыре компонента).

Фазовый и химический состав сплава Вуда

Ретгеновские данные подтверждают то, что в сплаве Вуда нет химических соединений между компонентами. На рентгенограмме присутствуют интерференционные линии металлов, составляющих сплав. Ниже показана рентгенограмма сплава Вуда, выполненная на дифрактометре ДРОН-3 в излучении меди, а также результаты ее расшифровки.

Рисунок 5. Рентгенограмма сплава Вуда.

Для определения того, какие элементы есть в составе сплава, можно использовать сканирующую электроннум микроскопию (СЭМ). При этом можно установить состав в определенной точке поверхности. Ниже показан состав сплава на двух участках — на светлом (в растровом микроскопе он выглядит светло-серым) и на темном. На светлом участке обнаружен только висмут. Его в сплаве 50%, значит светлые дендриты — это висмут. В темных участках обнаружены все 4 элемента, составляющие сплав.

Рисунок 6. Состав сплава Вуда на светлом участке (отмечен красным маркером).

Рисунок 7. Состав сплава Вуда на участке эвтектики.

Интересно выглядит структура сплава Вуда после многократного использования? Такой сплав загрязнен, поэтому трудно сказать, какой точно он имеет состав (да и нет необходимости!). А вот как он выглядит знать надо. Поскольку сплав литой, то в нем присутствуют дендриты. Светлый дендрит может быть висмутом. Темные — возможно и на основе свинца, но точно сказать можно только после проведения элементного анализа.

аб

вг

Рисунок 8. Дендриты в «грязном» сплаве Вуда»: а — светлое поле, б, в, г- дифференциально-интерференционный контраст.

Где еще применяется сплав Вуда

Существует большая сфера применения материала со свойствами сплава Вуда. Это в первую очередь его технологические свойства, заключающиеся в возможности удаления сплава горячей водой. Таким, например, применением, является способ изгибания труб с тонкими стенками, которые при изгибе без спецсредств будут деформированы, т.е. изомнутся, по меньшей мере, в неравномерный гофр. Чтобы не допустить такую деформацию, трубы внутри заполняют сплавом, который сдерживает гофрообразование. Затем, после сгибания трубы, сплав легко удаляется, вытекая наружу при нагреве. По этой же причине сплав применяется и в гальванопластике, где он заполняет полости в металлических изделиях.

Еще одно технологическое назначение сплава – прецизионное литье, т.е. такое литья при котором получаемые размеры требуется соблюсти очень точно, даже с учетом термоусадки сплава отливки. Сплав Вуда имеет очень малую усадку.

Также сплав находит применение в научных целях. Он используется для получения металлографических образцов, когда сам по себе исследуемый образец очень мал и неудобен для шлифовки и полировки. Тогда его заливают сплавом Вуда до такого размера, который позволяет выполнять обработку микрошлифов. Кроме этого известно применение сплава в химических лабораториях для создания низкотемпературной нагревательной бани.

Известно, что детали из сплава Вуда можно найти и датчиках, реагирующих на температуру, как правило, это датчики противопожарной сигнализации.

Известно, что сплав Вуда в 1976 году также побывал и в космосе на орбитальной станции «Салют-5», на которой в рамках технологического эксперимента с кодовым названием «Сфера» космонавты Б.Волынов и В.Жолобов выступили в роли металлургов, исследуя процесс затвердевания жидкого металла в условиях невесомости.

Применение

Область применения сплава Вуда немногочисленна. Связано это с его характеристиками. Его используют в химической и технической промышленности.

Его используют при сгибании труб с тонкими стенками. Связано это с тем, что трубы при простой гибке могут деформироваться или сломаться. Сплавом Вуда заполняют полость трубы. Изделие сгибают до требуемого угла. Материал изнутри удаляется при нагреве стенок трубы.

Прецизионное литье — ещё одно направление, где используется смесь Вуда. Процесс подразумевает изготовление деталей высокой точности, которые не изменяют размеров при усадке.

Данный легкоплавкий материал часто используется в химических целях. В лабораториях из него создают низкотемпературные бани для разогревания реактивов. Его можно увидеть в датчиках пожарной безопасности.

Чаще используется в качестве припоя, для плавки которого необходимо использовать электрические паяльники малой мощности. Благодаря этому можно избежать перегрева припоя и сохранить показатель вязкости у расплавленного сплава. Если работать нужно с маленькими деталями, рекомендуется использовать нагревательный инструмент с тонким жалом. Таким образом можно сократить расход припоя и не портить детали. Если припоя слишком много, портится качество соединения.

При работе нужно делать точные и равномерные движения. Однако нельзя затягивать с процессом пайки, поскольку сплав быстро застывает. Готовое соединение обладает высоким показателем хрупкости.

Поскольку смесь при термической обработке становится токсичной, пайку проводят проветриваемом помещении. Дополнительно к этому используют защитные очки, которые уберегут слизистую оболочку глаз от испарений плавящегося металла. Также используют респиратор. Он защищает дыхательные пути от ядовитых веществ, которые выделяются при плавке. Чтобы не обжечь руки, нужно использовать защитные перчатки и пинцет.

Особенности применения и отличие от аналогов

Как уже отмечалось, сплав Вуда не первый и не единственный аналогичный сплав с подобным составом. Наиболее известный аналог – это сплав Розе. Однако сплав Розе имеет более высокую температуру плавления, что не является в целом критичным для современной паяльной техники, однако требует использования глицерина для нагрева. Глицерин же при высоком нагреве интенсивно испаряется, дымит.

Единственным существенным преимуществом сплава Розе является то, что он не токсичен, так как в его составе отсутствует канцерогенный токсин кадмий.

Токсичность сплава Вуда – основной его недостаток, которые определяет необходимость в специальных мерах безопасности, заключающихся в контроле ПДК и организации проветривания при работе.

Методы паяльных работ

Для выпаивания разъема или детали из платы без перегрева нужно залудить контакты низкоплавким материалом.

Итоговая температура плавления будет выше, чем у Розе в чистом виде так как он смешивается с припоем на плате у которого другой состав и характеристики. (плавление при 270 °C)

Место работ имеет важное значение. Например, плата может быть очень теплоемкой из-за ее толщины. Время и мощность нагрева должны быть больше, чем у более легкой платы.

Материнскую плату от компьютера придется дольше прогревать, чем маленькую плату от мобильного телефона из-за большей многослойности и толщины текстолита.

Сначала наносится флюс на контакты выпаиваемой детали. Добавляется несколько гранул легкоплавкого припоя. Есть несколько техник паяльных работ.

Работа паяльником

Нужны массивные жала: мини волна, топорик.

Температуру паяльника можно оставить в пределах 230 °C, например, 200 °C.

Контакты детали нужно залудить легкоплавким сплавом, предварительно нанеся флюс.

На контактах образуется капля припоя, которую легко разогреть одним паяльником на небольшой мощности.

Результат паяльных работ.

Как выпаять разъем USB одним паяльником и Розе

Быстрая и безопасная пайка одним паяльником и легкоплавким припоем.

Подробнее

Пайка феном

Фен выставляется на температуру примерно 120 — 170 °C со средним потоком воздуха.

Гранулы постепенно расплавляются и смешиваются с контактами. Их лучше поправлять пинцетом по месту пайки, чтобы припой лучше распределился.

Нужно тщательно прогреть место пайки. Постепенно, по мере повышения температуры, деталь начнет выпаиваться. Это будет заметно при появлении блика на припое.

Результат низкотемпературной пайки.

Комбинированный метод

Фен сверху над местом пайки нужен для вспомогательного инструмента, на 100°C, а паяльником паяются детали сплавом Розе на температуре 200 °C.

После пайки детали обязательна очистка от получившейся смеси припоя с помощью оплетки.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]