Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.
Рис. 1. Грозовой разряд
На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.
Причины и места возникновения
Электрическая дуга является одной из самых смертоносных и наименее изученных опасностей электроэнергии и преобладает в большинстве отраслей промышленности. Широко признается, что чем выше напряжение электрической системы, тем больше риск для людей, работающих на территории или вблизи проводов и оборудования, находящихся под напряжением.
Тепловая энергия от вспышки дуги, однако, может на самом деле быть больше и возникать чаще при более низких напряжениях с теми же разрушительными последствиями.
Возникновение электрической дуги, как правило, происходит при случайном контакте между токоведущим проводником, таким как контактный провод троллейбусной или трамвайной линии с другим проводником, или заземленной поверхностью.
Когда это происходит, возникающий ток короткого замыкания плавит провода, ионизирует воздух и создает огненный канал проводящей плазмы характерной дугообразной формы (отсюда и название), причем температура электрической дуги в ее сердцевине может достигать свыше 20000 °С.
Что же такое электрическая дуга?
По сути, так в обиходе именуют хорошо известный в физике и электротехнике дуговой разряд – вид самостоятельного электроразряда в газе. Каковы же физические свойства электрической дуги? Она горит в широком диапазоне давления газа, при постоянном или переменном (до 1000 Гц) напряжении между электродами в диапазоне от нескольких вольт (сварочная дуга) до десятков киловольт. Максимальная плотность тока дуги наблюдается на катоде (102-108 А/см2), где она стягивается в катодное пятно, очень яркое и малое по размерам. Оно беспорядочно и непрерывно перемещается по всей площади электрода. Температура его такова, что материал катода в нем кипит. Поэтому возникают идеальные условия для термоэлектронной эмиссии электронов в прикатодное пространство. Над ним образуется небольшой слой, заряженный положительно и обеспечивающий ускорение эмитируемых электронов до скоростей, при которых они ударно ионизируют атомы и молекулы среды в межэлектродном промежутке.
Такое же пятно, но несколько большее и малоподвижное, формируется и на аноде. Температура в нем близкая к катодному пятну.
Если ток дуги порядка нескольких десятков ампер, то из обоих электродов вытекают с большой скоростью нормально к их поверхностям плазменные струи или факелы (см. на фото ниже).
При больших токах (100-300 А) возникают добавочные плазменные струи, и дуга становится похожей на пучок плазменных нитей (см. на фото ниже).
Условия горения
Сущность сварочного процесса заключается в преобразовании электрической энергии в тепловую.
Для поддержания сварочного столба необходимо создать условия для быстрой ионизации газа: детали прогревают, чтобы воздух вокруг них был теплым, или подают в рабочую зону газ, способный ионизироваться. Легче всего ионизируются частицы щелочных и щелочноземельных металлов. При пропускании тока через стержень их частицы становятся активными.
Чтобы дуговой столб не угасал, важно поддерживать постоянную температуру в катодной области. Она напрямую зависит от химического состава катода, его площади. Нужная температура поддерживается источником тока, в промышленных условиях она достигает 7 тысяч градусов.
Как проявляет себя дуга в электрооборудовании
Как было сказано выше, катализатором ее возникновения является сильное тепловыделение в катодном пятне. Температура электрической дуги, как уже упоминалось, может достигать 20 000 °С, примерно в четыре раза выше, чем на поверхности солнца. Этот зной может быстро расплавить или даже испарить медь проводников, которая имеет температуру плавления около 1084 °С, намного ниже, чем в дуге. Поэтому в ней часто образуются пары меди и брызги расплавленного металла. Когда медь переходит из твердого состояния в пар, она расширяется в несколько десятков тысяч раз от своего первоначального объема. Это эквивалентно тому, что кусочек меди в один кубический сантиметр изменится до размера 0,1 кубометра в доли секунды. При этом возникнет давление высокой интенсивности и звуковые волны, распространяющиеся вокруг с большой скоростью (которая может быть свыше 1100 км в час).
Воздействие электрической дуги
Тяжелые травмы, и даже со смертельным исходом, при ее возникновении могут получить не только лица, работающие на электрооборудования, но и люди, находящиеся поблизости. Дуговые травмы могут включать в себя внешние ожоги кожи, внутренние ожоги от вдыхания горячих газов и испаренного металла, повреждения слуха, зрения, такие как слепота от ультрафиолетового света вспышки, а также многие другие разрушительные повреждения.
При особо мощной дуге может также произойти такое явление, как ее взрыв, создающий давление более 100 килопаскалей (кПа) с выбросом частиц мусора, подобных шрапнели, со скоростью до 300 метров в секунду.
Лица, перенесшие воздействия электрического тока электрической дуги, могут нуждаться в серьезном лечения и реабилитации, а цена их травм может быть экстремальной — физически, эмоционально и финансово. Хотя законодательство требует от предприятий проведения оценки рисков для всех видов трудовой деятельности, однако риск поражения электрической дугой часто упускается из виду, потому что большинство людей не знают, как оценивать и эффективно управлять этой опасностью. Защита от воздействия электрической дуги предполагает использование целого комплекса средств, включая применение при работе с электрооборудованием, находящимся под напряжением, специальных электрозащитных средств, спецодежды, а также самого оборудования, прежде всего высоко- низковольтных коммутационных электроаппаратов, сконструированных с применением средств гашения дуги.
Рекомендации
- А. Андерс (2003). «Отслеживание происхождения науки о дуговой плазме-II. Ранние непрерывные разряды» (PDF). IEEE Transactions по науке о плазме
.
31
(5): 1060–9. Дои:10.1109 / TPS.2003.815477. - Айртон, Герта (2015). Электрическая дуга (КЛАССИЧЕСКИЙ РЕПРИНТ)
. С.Л .: ЗАБЫТЫЕ КНИГИ. п. 94. ISBN 978-1330187593 . - Электрическая дуга
, Герта Айртон, стр.20 - Лакиеш, Мэтью (1920). «Искусственный свет, его влияние на цивилизацию». Природа
.
107
(2694): 112. Bibcode:1921Натура.107..486.. Дои:10.1038 / 107486b0. HDL:2027 / chi.14153449. OCLC 1446711. S2CID 4135392. - «Дуга». Колумбийская энциклопедия
(3-е изд.). Нью-Йорк: Columbia University Press. 1963. LCCN 63020205. - Дэви, Хамфри (1812). Элементы химической философии
. п. 85. ISBN 978-0-217-88947-6 . Это вероятное происхождение термина «
дуга
«. - ^ аб
«Выяснение происхождения дуговой плазмы Наука-II. Ранние непрерывные разряды». Автор: André ANDERS. IEEE.
Xplore
, ieee.org.
IEEE Transactions по науке о плазме
. Том 31, выпуск 5, октябрь 2003 г. - Карцев, В. (1983). Ши, Уильям Р. (ред.). Математизированная природа
. Бостон, Массачусетс: Kluwer Academic. п. 279. ISBN 978-90-277-1402-2 . - Мейсон, Джоан. «Сара Айртон». Оксфордский национальный биографический словарь
(онлайн-изд.). Издательство Оксфордского университета. Дои:10.1093 / ссылка: odnb / 37136. (Подписка или Членство в публичной библиотеке Великобритании требуется.) - ^ абcd
Ховатсон, А. (1965). «Введение в газовые разряды».
Наука и технологии источников плазмы
.
9
(4): 47–101. Bibcode:2000PSST …. 9..517B. Дои:10.1088/0963-0252/9/4/307. ISBN 978-0-08-020575-5 . S2CID 37226480. - Мехта, В. (2005). Принципы электроники: для получения диплома, AMIE, степени и других инженерных экзаменов
(9-е, разноцветное иллюстративное изд.). Нью-Дели: С. Чанд. С. 101–107. ISBN 978-81-219-2450-4 . - «Лазерные лучи создают туннели для молний». Получено 2015-06-20.
- Клеричи, Маттео; Ху, Йи; Лассонд, Филипп; Милиан, Карлес; Куайрон, Арно; Christodoulides, Demetrios N .; Чен, Чжиган; Раззари, Лука; Видаль, Франсуа (01.06.2015). «Лазерное наведение электрических разрядов вокруг объектов». Достижения науки
.
1
(5): e1400111. Bibcode:2015SciA …. 1E0111C. Дои:10.1126 / sciadv.1400111. ISSN 2375-2548. ЧВК 4640611. PMID 26601188. - «Подавление дуги». Получено 6 декабря, 2013.
- Харпер, Чарльз А .; Петри, Эдвард М. (2003). Пластмассовые материалы и процессы: краткая энциклопедия
. Джон Уайли и сыновья. п. 565. ISBN 9780471456032 . - Харпер и Петри 2003, п. ???[страница нужна
] - «Лабораторная запись №106 Влияние дугового тушения на окружающую среду
«. Технологии гашения дуги. Апрель 2011 г.. Получено 10 октября, 2011.
Дуга в электрических аппаратах
В этом классе электротехнических устройств (автоматические выключатели, контакторы, магнитные пускатели) борьба с данным явлением имеет особое значение. Когда контакты выключателя, не оборудованного специальными устройствами для предотвращения дуги, размыкаются, то она обязательно зажигается между ними.
В момент, когда контакты начинают отделяться, площадь последних уменьшается быстро, что приводит к увеличению плотности тока и, следовательно, к повышению температуры. Выделяемого тепла в промежутке между контактами (обычная среда масло или воздух) достаточно для ионизации воздуха или испарения и ионизации масла. Ионизированный воздух или пар действует как проводник для тока дуги между контактами. Разность потенциалов между ними весьма мала, но ее достаточно для поддержания дуги. Следовательно, ток в цепи остается непрерывным тех пор, пока дуга не устранена. Она не только задерживает процесс прерывания тока, но также генерирует огромное количество теплоты, которое может привести к повреждению самого выключателя. Таким образом, главная проблема в выключателе (прежде всего высоковольтном) – это гашение электрической дуги в кратчайшие сроки для того, чтобы выделяемое в ней тепло не могло достичь опасного значения.
Продолжительность разряда
В практических применениях чаще используется непрерывный режим разряда. Однако импульсный режим также распространен. Его используют при контактной сварке.
Сварка заготовок проводится не сплошным швом, а в нескольких точках. Такое соединение не обеспечивает герметичности, но обладает достаточной прочностью для выполнения тонкостенных конструкций, таких, как корпуса бытовой техники, различных приборов и установок, корпуса автомобилей.
Процесс осуществляется неплавящимся массивным электродом, который с большой силой прижимается к заготовке. Через электрод пропускается кратковременный ток очень большой силы — до нескольких тысяч ампер. В месте контакта металл обеих заготовки расплавляется, а по окончании импульса охлаждается и кристаллизуется как единое целое.
Далее электрод (или заготовка) перемещается вдоль линии шва к новой точке, прижимается к ней и подается новый импульс.
Электроды-ролики для контактной сварки
Существует разновидность такого метода, позволяющая получать и герметичные соединения. Электрод в этом случае выполняется в виде ролика, катящегося по поверхности заготовки. Импульсы подаются с небольшими промежутками, зоны оправления вдоль линии качения частично перекрываются и образуют сплошной материал шва. Такая технология применяется при автоматической сварке трубопроводов.
Факторы поддержания дуги между контактами выключателей
К ним относятся:
1. Напряжение электрической дуги, равное разности потенциалов между контактами.
2. Ионизированные частицы между ними.
Принимая это, отметим дополнительно:
- Когда между контактами имеется небольшой промежуток, даже небольшой разности потенциалов достаточно для поддержания дуги. Одним из способов ее гашения является разделение контактов на такое расстояние, что разность потенциалов становится недостаточной для поддержания дуги. Тем не менее этот метод является практически неосуществимым в высоковольтном оборудовании, где может потребоваться разделение на многие метры.
- Ионизированные частицы между контактами, как правило, поддерживают дугу. Если ее путь деионизирован, то процесс гашения будет облегчен. Это может быть достигнуто путем охлаждения дуги или удаления ионизированного частиц из пространства между контактами.
- Есть два способа, посредством которых осуществляется защита от электрической дуги в выключателях:
— метод высокого сопротивления;
— метод нулевого тока.
Разновидности
Существует несколько классификаций рассматриваемого элемента, которые имеют различные схемы подвода тока и среды, где он появляется.
Сварка
- С прямым действием. В данном случае оборудование устанавливается в параллель изделию из металла, которое необходимо сварить. Дуга, в свою очередь, становится под прямым углом по направлению к электродам и металлической поверхности.
- С косвенным действием. Появляется при использовании двух электродов, которые находятся от свариваемого изделия под углом в 50 градусов. Дуга появляется между электродом и свариваемым материалом.
Возникновение сварочной дуги.
Помимо этого, можно поделить по принципу атмосферы, где появляется сварочная дуга:
- Открытая сфера. Дуга может гореть на открытом пространстве с образованием газовой фазы, где содержится пар металла, электрода и поверхностей после обработки сварочным инструментом.
- Закрытая сфера. Дуга горит под флюсом. В газовой фазе возле дуги попадает пар материала, электродов и самого флюсового слоя.
- С подачей газовой смеси. В дуге могут находиться сжатый газ, такой как гелий, углекислый газ, водород, аргон и иные примеси газовых веществ. Они необходимы, чтобы свариваемая поверхность изделия не подвергалась окислению. Благодаря их подаче среда восстанавливается либо становиться нейтральной к внешним факторам. В дугу попадает газ, который подается для работы, пар от свариваемого изделия и электродов.
Помимо перечисленных классификаций можно также выделить виды по длительности действия:
- классический используется для постоянной эксплуатации;
- импульсный – для одноразового использования.
Одним из самых востребованных деталей является стальной, т.е. плавящийся электрод. Однако на сегодняшний день большинство профессионалов отдают предпочтение неплавящемуся, из чего можно сделать вывод, что типы рассматриваемых элементов достаточно различны между собой.
Гашение дуги увеличением ее сопротивления
В этом методе сопротивление на пути дуги растет с течением времени так, что ток уменьшается до значения, недостаточного для ее поддержания. Следовательно, он прерывается, и электрическая дуга гаснет. Основной недостаток этого метода состоит в том, что время гашения достаточно велико, и в дуге успевает рассеиваться огромная энергия.
Сопротивление дуги может быть увеличена путем:
- Удлинения дуги – сопротивление дуги прямо пропорциональна ее длине. Длина дуги может быть увеличена за счет изменения зазора между контактами.
- Охлаждением дуги, точнее среды между контактами. Эффективное охлаждение обдувом должно быть направлено вдоль дуги.
- Помещением контактов в трудноионизируемую газовую среду (газовые выключатели) или в вакуумную камеру (вакуумные выключатели).
- Снижением поперечного сечения дуги путем ее пропускания через узкое отверстие, или снижением площади контактов.
- Разделением дуги — ее сопротивление может быть увеличено путем разделения на ряд небольших дуг, соединенных последовательно. Каждая из них испытывает действие удлинения и охлаждения. Дуга может быть разделена путем введения некоторых проводящих пластин между контактами.
Гашение дуги методом нулевого тока
Этот метод используется только в цепях переменного тока. В нем сопротивление дуги сохраняется низким, пока ток не снижается до нуля, где она гаснет естественным путем. Ее повторное зажигание предотвращается несмотря на увеличение напряжения на контактах. Все современные выключатели больших переменных токов используют этот метод гашения дуги.
В системе переменного тока последний падает до нуля после каждого полупериода. В каждое такое обнуление дуга гаснет на короткое время. При этом среда между контактами содержит ионы и электроны, так что ее диэлектрическая прочность небольшая и может быть легко разрушена растущим напряжением на контактах.
Если это происходит, электрическая дуга будет гореть в течение следующего полупериода тока. Если сразу же после его обнуления диэлектрическая прочность среды между контактами растет быстрее, чем напряжение на них, то дуга не зажжется и ток будет прерван. Быстрое увеличение диэлектрической прочности среды вблизи нуля тока может быть достигнуто путем:
- рекомбинации ионизированных частиц в пространстве между контактами в нейтральные молекулы;
- удалением ионизированных частиц прочь и заменой их нейтральными частицами.
Таким образом, реальной проблемой в прерывании переменного тока дуги является быстрая деионизация среды между контактами, как только ток становится равным нулю.
Способы деионизация среды между контактами
1. Удлинение зазора: диэлектрическая прочность среды пропорциональна длине зазора между контактами. Таким образом, при быстром размыкании контактов может быть достигнута и более высокая диэлектрическая прочность среды.
2. Высокое давление. Если оно в непосредственной близости от дуги, увеличивается, плотность частиц, составляющих канал дугового разряда, также растет. Повышенная плотность частиц приводит к высокому уровню их деионизации и, следовательно, диэлектрическая прочность среды между контактами увеличивается.
3. Охлаждения. Естественная рекомбинация ионизированных частиц происходит быстрее, если они остывают. Таким образом, диэлектрическая прочность среды между контактами может быть увеличена путем охлаждения дуги.
4. Эффект взрыва. Если ионизированные частицы между контактами сметены прочь и заменены неионизированными, то диэлектрическая прочность среды может быть увеличена. Это может быть достигнуто с помощью газового взрыва, направленного в зону разряда, или впрыскиванием масла в межконтактное пространство.
В таких выключателях в качестве среды гашения дуги используется газ гексафторид серы (SF6). Он имеет сильную тенденцию поглощать свободные электроны. Контакты выключателя открываются в потоке высокого давления SF6) между ними (см. рисунок ниже).
Газ захватывает свободные электроны в дуге и формирует избыток малоподвижных отрицательных ионов. Число электронов в дуге быстро сокращается, и она гаснет.
Использует
Электрическая дуга может плавиться оксид кальция
В промышленности электрические дуги используются для сварка, плазменная резка, за электроэрозионная обработка, как дуговая лампа в кинопроекторы, и точки наблюдения в сценическое освещение. Электродуговые печи используются для производства стали и другие вещества. Карбид кальция производится таким образом, так как требует большого количества энергии для продвижения эндотермический реакция (при температуре 2500 ° С).
Углеродные дуговые лампы были первые электрические фонари. Они использовались для уличных фонарей в 19 веке и для специализированных приложений, таких как прожекторы до Второй мировой войны. Сегодня электрические дуги низкого давления используются во многих областях. Например, флуоресцентные трубки, ртуть, натрий и металлогалогенные лампы используются для освещения; ксеноновые дуговые лампы используются для кинопроекторов.
Формирование интенсивной электрической дуги, похожей на мелкую. дуговая вспышка, это основа взрывные детонаторы.
Основное остающееся применение — распределительные устройства высокого напряжения для сетей передачи высокого напряжения. В современных устройствах используется гексафторид серы под высоким давлением в сопловом потоке между отдельными электродами внутри сосуда высокого давления. Переменный ток короткого замыкания прерывается при нулевом токе сильно электроотрицательными ионами SF6, поглощающими свободные электроны из распадающейся плазмы. Подобная воздушная технология была в значительной степени заменена, потому что требовалось много шумных блоков, подключенных последовательно, чтобы предотвратить повторное зажигание тока в аналогичных условиях суперсети.
Электрические дуги исследованы на электрическая тяга космического корабля.
Они используются в лаборатории для спектроскопия для создания спектрального излучения путем интенсивного нагрева образца иметь значение.
Направляя дугу
Ученые открыли метод управления траекторией дуги между двумя электродами, направляя лазерные лучи на газ между электродами. Газ превращается в плазму и направляет дугу. Путем создания плазменного пути между электродами с помощью различных лазерных лучей дуга может быть образована изогнутыми и S-образными дорожками. Дуга также может ударить о препятствие и перестроиться на другой стороне препятствия. Технология дуги с лазерным наведением может быть полезна в приложениях для подачи электрической искры в определенное место.[12][13]