Применение железа: от арматуры фундамента до магнитопривода

  • Обозначение — Fe (Iron);
  • Период — IV;
  • Группа — 8 (VIII);
  • Атомная масса — 55,845;
  • Атомный номер — 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов — 1s22s22p63s23p63d64s2;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см3;
  • Молярный объем = 7,1 см3/моль.

Соединения железа:

  • Оксид железа (II)
  • Гидроксид железа (II)
  • Оксид железа (III)
  • Гидроксид железа (III)
  • Соли железа

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия.

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe2+/Fe3+, а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).

Железо в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером «26», относится к переходным металлам (См. Атомы переходных элементов).

Рис. Строение атома железа.

Электронная конфигурация атома железа — 1s22s22p63s23p63d64s2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.

Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Когда было открыто

История знакомства человека с железом начинается с Космоса. Судя по древним (например, древнеегипетским) названиям элемента, это было метеоритное железо. Хеттские тексты упоминают о нем как об «упавшем с неба».

Человек использует металл 6 тысяч лет.

Археологи откопали используемые древними шумерами и египтянами инструменты. Они сделаны из метеоритного железа.

Железные изделия завоевывали мир. Металлу посвящены стихи Гомеровой «Илиады», его упоминают Аристотель и Страбон.

Небесным происхождением обусловлено античное наименование железа: «сидер» («звездный»).

Ученые исследуют потенциал металла постоянно. Так, в 1868 году русский ученый Д. К. Чернов открыл кристаллические модификации вещества.

Как искали железную руду

В средине века металлические изделия ценились весьма высоко, их берегли, а также передавали по наследству.

Путь становления котла или топора в те времена был очень долгим и длинным: следовало найти железо, а затем обработать.

Дело начиналось с поиска мест, где залегали металлические руды. В поиске помогал, опыт, который люди накопили в течение многих столетий. Прежде всего, это месторождения, выходящие на поверхность земли.

По всей Европе железо находили в виде комков руды:

1. зеленоватых — на дне озер;

2. рыжеватых — под дерном;

3. красноватых — в лесных болотах.

Дно прозрачных озер просматривали с лодок, либо ныряли в мутную воду в поисках кусочков руды, которые выгребали черпаками.

Железную руду также обнаруживали по бурой растительности. Луговой дерн разрезали, сдирали болотные пласты, а рудное гнездо доставали лопатами. Иногда такой луг покрывался тысячами ям.

Чуть позже руду стали добывать в шахтах, которые достигали глубины до 500 метров.

Железную руду поднимали из шахт подъемными механизмами, а подземные воды откачивали ручными насосами.

Физико-химические характеристики

Железо – металл не особо твердый (4-5 по шкале Мооса).

Физические и химические свойства определяются примесями и микроклиматом:

  • Реагирует с металлами при повышенных температурах.
  • Чистое железо пластично, не окисляется в воде и на воздухе.
  • При нахождении в сухом воздухе (не горячее 200°C) покрывается матовой пленкой-оксидом. Она предотвращает коррозию металла.
  • Наделено свойствами магнита. По этой характеристике железо легко отличить от других металлов.

Вещество с формулой FeO•nH2O – это обычная ржавчина.

  • Кристаллическая решетка кубическая, но меняет структуру в зависимости от температуры.
  • Железо, повышенные температуры плюс вода образуют сульфиды, галогениды, фосфиды, титаниды, нитриды.
  • Не растворяется щелочами.
  • Взаимодействие с кислотами зависит от концентрации. Разбавленные растворяют металл, концентрированные создают оксидную пленку-щит.


Гидротермальный источник с железистой водой. Оксиды железа окрашивают воду в бурый цвет.
Мокрое либо горячее железо покрывается ржавчиной. Углерод делает его хрупким. Эти недостатки ограничивают применение металла.

Свойства атома
Название, символ, номерЖелезо / Ferrum (Fe), 26
Атомная масса (молярная масса)55,845(2) а. е. м. (г/моль)
Электронная конфигурация[Ar] 3d6 4s2
Радиус атома126 пм
Химические свойства
Ковалентный радиус117 пм
Радиус иона(+3e) 64 (+2e) 74 пм
Электроотрицательность1,83 (шкала Полинга)
Электродный потенциалFe←Fe3+ −0,04 В Fe←Fe2+ −0,44 В
Степени окисления6, 3, 2, 0
Энергия ионизации (первый электрон)759,1 (7,87) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)7,874 г/см³
Температура плавления1812 K (1538,85 °C)
Температура кипения3134 K (2861 °C)
Уд. теплота плавления247,1 кДж/кг 13,8 кДж/моль
Уд. теплота испарения~6088 кДж/кг ~340 кДж/моль
Молярная теплоёмкость25,14 Дж/(K·моль)
Молярный объём7,1 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая объёмноцентрированная
Параметры решётки2,866 Å
Температура Дебая460 K
Прочие характеристики
Теплопроводность(300 K) 80,4 Вт/(м·К)
Номер CAS7439-89-6

Плюсы и минусы

Множество достоинств, но и недостатков не меньше.

ДостоинстваНедостатки
Легкая механическая обработкаВысокая плотность; изделия получаются тяжелыми
Твердость, упругость, прочность — лучшие свойства сплавовКоррозия металла в присутствии влаги
Возможность получать заданные свойства сплавов при добавлении малого количества примесейСклонность к электрохимическому корродированию

Рекомендуем: КОБАЛЬТ — щедрый подарок горных духов

Ковкость дает возможность производить декоративные изделия.

Железо в природе

Железо – четвертый по распространенности элемент на планете и второй среди металлов (после алюминия). Но содержание неравномерно: 86% запасов сосредоточено в ядре планеты, остальное делят мантия и кора.

Самородное железо в природе редкость, почти всегда это минералы.


Самородное железо

Их три сотни, самые известные и богатые железом (% содержание в составе):

  • Магнетит (магнитный железняк) – 72.
  • Гематит (красный железняк) – 70.
  • Лепидокрокит, гетит – по 63.
  • Лимонит (бурый железняк) – 62.
  • Сидерит (шпатовый железняк) – 48.

Железо обнаружено во всех живых организмах.

Второй источник – метеориты.

Четверть массы вещества каменных метеоритов и 91% железных – это железо.

Особенность свойств

Одним из физических свойств железа является ферромагнитность. На практике с магнитными свойствами этого материала приходится встречаться часто. Это — единственный металл, который обладает такой редкостной чертой.


Под действием магнитного поля происходит намагничивание железа. Сформировавшиеся магнитные свойства металл еще долго сохраняет и сам остается магнитом. Такое исключительное явление объясняется тем, что структура железа содержит большое количество свободных электронов, способных передвигаться.

Технология получения

Железная руда (магнетит и гематит) отправляется в работу: на обогатительный либо металлургический комбинат.


Железная руда

Чугун выплавляют в доменной печи. При 1610°С загружают шихту (агломерат, окатыши) с флюсом, продувают горячим воздухом. Это позволяет убрать примеси, отделить шлак.

Основные способы получения стали:

  1. Мартеновский. Расплав чугуна, руды, скрапа плавят при 2100°С.

При необходимости в конце плавки добавляются легирующие присадки.

  1. Кислородно-конвертерный. Массив чугуна в печи продувают воздухом под давлением. Используется смесь кислорода с воздухом либо чистый кислород (для сталей с премиальными характеристиками).
  2. Электроплавильный. Чугун сжигают в электропечи при 2250°С. Способ используют для выплавки легированных, других специальных марок сталей.
  3. Прямой. Богатые железом окатыши загружают в печь. Продувают водородом при 1050°С.

Закалка стали – нагрев до раскаленности и охлаждение – делают ее пластичной, твердой.

Производство беспримесного металла основано на электролизе расплава солей вещества.

Железный сплав, в составе которого менее 2% углерода, – это сталь. Более 2% углерода – чугун.

История производства стали

До н.э. в Европе уже повсюду производили кованое железо. Многие великолепные Греческие и Римские здания были построены из камня с применением железных инструментов в форме бабочки, покрытых свинцом. В 500 году до н. э. этруски, жившие на западном побережье Италии производили более 4,5 тысячи килограмм железа в год.

Ковку железа осуществляли в кузнице, а для поддержания огня использовали древесный уголь. Огонь раздували при помощи специальных мехов, сшитых из шкур животных. Позже маленькие каменные печи разобрали, и начали массовую выплавку железа. Руду к печам доставляли на парусных судах. В связи с тем, что метод обработки руды, который использовали этруски, был малоэффективен, ее запасы быстро истощились. К тому же производство древесного угля резко сократило количество лесов на западе Италии.

Первая сталь была создана кельтами около 200 года н. э. Они резали кованое железо на тонкие полоски и складывали их в контейнер с обожженными костями и углем, после чего все это нагревали в печи в течение 10-12 часов на очень сильном огне. В результате поверхность металла обогащалась углеродом. Затем они эти полоски сваривали между собой посредством ковки и таким образом создавали ножи. Эти ножи стали предшественниками клинков, которые мы ошибочно называем дамасскими.

Кельтский процесс производства стали в 1050 году был скопирован викингами и немцами. С тех пор в этих странах производили стальные клинки, метод изготовления которых, был строго засекречен. Дамасскую сталь производили в Пакистане и в виде булатных заготовок отправляли в Сирию, где изготавливали знаменитые дамасские клинки. Процесс производства дамасской стали очень сложный, поскольку ее необходимо было нагревать до очень высокой температуры, и если температуру превысить, то материал мог разрушиться.

Со временем температура плавления железа в печах становилась все выше, поэтому полученное железо, содержало 3-4% углерода.

Оно было хрупким и подходило только для литья. Из него нельзя было делать ножи и детали для транспорта. К тому же к этому времени огромная часть лесов в Европе была вырублена для строительных целей и производства древесного угля.

Тогда король Англии издал указ о том, что леса вырубать больше нельзя, и производителям стали пришлось придумать способ переработки угля в кокс. В Англии разработали метод лужения стали, при этом они смешивали расплавленное железо, с силикатом железа и оксидом железа. Силикат железа является одним из компонентов кованого железа.

Печи, работающие на угле, назвались кричным горном. Один работник должен был помешивать полученную смесь, в результате чего образовывался диоксид углерода, поэтому температура плавления железа становилась выше, и начинался процесс лужения.

Внутрь помещались крупные куски весом от 90 кг до 130 кг. Другой работник с помощью пары больших щипцов брал эти куски и помещал под пресс, чтоб из них выдавить силикат железа. После пресса куски помещали в прокатный стан, где из них формировались полоски кричного железа.

Эти полоски нарезали на короткие кусочки и соединяли между собой, после чего помещали их в углубление, заполненное углеродом, и нагревали до температуры сварки. После этого полоски кричного железа снова отправляли в прокатный стан и получали сортовое железо. Этот способ использовали не только в Европе, но на востоке Соединенных Штатов.

Чтоб получить сталь, тонкий сортовой прокат помещали в углубление, заполненное углеродом, полученным в результате сожжения костей, и нагревали при высокой температуре в течение нескольких дней.

Углерод поглощался железом, и в результате получалась пузырчатая сталь. Пузырчатой называли цементную сталь или томленку. Это понятие появилось благодаря внешнему виду полосок, извлеченных из углеродной ямы, которые были покрыты пузырями. После этого полоски складывали вместе и ковали, затем снова складывали и ковали, таким способом получали сталь высокого качества.

Англия нуждалась в высококачественной стали, чтоб создать флот, который смог бы пресечь океан.

Один предприимчивый англичанин заметил, что стеклодувы в своих печах могут получать очень высокую температуру. Он взял полоски пузырчатой стали и поместил их в керамический тигель, после чего поставил емкость в печь стеклодувов. В результате сталь расплавилась, силикат железа испарился, а углерод остался, и получилась сталь очень высокого качества. На тот момент за процессом наблюдало много людей, и он не смог сохранить его в секрете.

Таким способом получали литую сталь, из которой в США было сделано большое количество старых инструментов, с маркировкой «литая сталь».

Где используется

Повседневную жизнь трудно представить без металла: железо практично, надежно, дешево. Возможно, когда-нибудь его вытеснит пластик. Сегодня в цене достоинства железного материала.


Сверхчистое железо

Промышленность

Железо нашло применение во всех формах. Сплавы – основа материалов, востребованных промышленностью. Порошок закупается тоннами для сварки, пиротехники, принтеров. Соединения – базис минеральных красок, пигмент при производстве текстиля, чернил.

Без него не обходится ни одна отрасль:

  • Машиностроение. Корпус машин, механизмов, особенно для работы в экстремальных условиях.
  • Строительство. Несущие конструкции зданий, сооружений (мостов, башен мобильной связи, др.), арматура. Кровельный материал, профнастил, металлочерепица.
  • Электротехника. Сердечники электромагнитов, якорей электромашин, пластин аккумуляторов.
  • Коммуникации. Из стали и чугуна выполнены промышленные и бытовые трубопроводы для перекачки пара, воды, газа, нефти. Это оболочка силовых кабелей.

Железо – анод в железо-никелевых, железо-воздушных аккумуляторах. Из стали сделаны бытовые и профессиональные инструменты.

Другие сферы

Металл применяют в науке, медицине, быту:

  • Очистка сточных вод.
  • Компонент гарта (полиграфского шрифта).
  • Кухонная утварь, столовая посуда.
  • Двери, замки.
  • Ультрамелким порошком магнетита (окиси металла) заправляют черно-белые принтеры.
  • Мебель авангардных стилей.
  • Препаратами с железом лечат анемию.
  • Садоводы и строители уничтожают грибок смесью медного и железного купороса (семиводный сульфат металла).

Искусственные радиоактивные изотопы – маркер при анализе химико-технологических, биологических процессов.

Применение

Более 90% всего металлургического производства занимает железо и его сплавы.

Продукция из сталей и чугунов — незаменимая и бóльшая часть конструкционных материалов, а это здания, мосты, железные дороги и многое другое.

Применение соединений железа:

  • двух- и трехвалентное железо используют в качестве коагулянта в системах водоочистки;
  • аноды в железо-никелевых и железо-воздушных аккумуляторах изготовлены из самого известного черного металла;
  • магнетит в виде ультрадисперсного порошка применяют в черно-белых лазерных принтерах;
  • FeCl3 применяют радиолюбители (травят печатные платы);
  • магнетит незаменим в изготовлении носителей памяти (жесткие диски).


Сферы применения железа

Для большинства организмов без железа нет жизни; при его помощи кислород доставляется к каждой клетке организма. Недостаток железа влечет за собой хлорозы у растений и железодефицитные анемии у животных.

Познавательно: убеждение, что яблоко на разрезе темнеет от входящего в них железа — миф.

Биологическое воздействие

Для человека железо как микроэлемент (0,02%) на особом счету: он регулирует клеточное дыхание, входит в состав крови.

Значение для здоровья

Организм взрослого человека содержит 3,5 грамма железа. Из них три четверти входит в гемоглобин крови, остальное распределяется по другим структурам организма.

Недостаток микроэлемента порождает анемичность у человека или животных, хлороз у растений.

Питание

В организм железо доставляется пищей.

Самые богатые микроэлементом продукты обнаружены во всех пищевых группах:

  • Хлеб, крупы.
  • Печень, мясо.
  • Яйца.
  • Свекла, листовая зелень.
  • Бобовые.
  • Сухофрукты, орехи, семечки.

Продукты питания содержат разные виды железа: гемовое и негемовое. Гемовое содержит «животный» ассортимент, негемовое – растительный.

Потребность

Суточная потребность в железе (мг):

  • дети – 4-18;
  • женщины – 18;
  • мужчины – 10.

При беременности норма увеличивается вдвое. Больше требуется анемичным людям и донорам.

Организму легче усваивать гемовое железо, поэтому веганам либо вегетарианцам ежесуточно требуется 30-33 мг.

Опасность переизбытка

Однако избыток вещества не приветствуется, поскольку «придавливает» образование антиоксидантов в организме.

Использование воды с содержанием железа более 2 мг на литр нежелательно. Если металла больше 200 мг – вода токсична.

По стандартам РФ, в литре воды должно быть не более 0,3 мг железа.

Булат (сталь): откуда он появился и кто его использовал

Первые сведения о булате поступили 2300 лет тому назад от участников знаменитого похода Александра Македонского в Индию.

Воины рассказывали, что клинки индийцев рубят камни и рассекают в воздухе легкие ткани.

Возможно, именно эти сведения использовал в своем романе «Талисман» Вальтер Скотт.

Он описывает состязание в ловкости между султаном Саладином и английским королем Ричардом Львиное Сердце. Ричард своим стальным мечом разрубил на две части копье одного из рыцарей. В ответ Саладин подбросил в воздух покрывало из тончайшей ткани и рассек его своим булатным клинком.

Булат действительно впервые появился в Индии.

Индусы продавали в страны Востока вутцы — «хлебцы» из стали. Они представляли собою плоские лепешки диаметром 12,5 см и толщиной 0,25 см. Весили вутцы около 900 грамм. Такой «хлебец» разрубался пополам, на равные части, чтобы покупатель мог рассмотреть строение металла.

Искусством обработки стали индийские мастера владели в совершенстве.

«Никогда не будет народа, который лучше бы разбирался в отдельных видах мечей и в их названиях, чем жители Индии», — писал Бируни, увидевший воочию производство стали и мечей. Особенно поразили его цветные мечи. Отполированное железо индийцы натирали раскаленным порошком медного купороса, после чего получали мечи различных цветов — зеленые, синие, белые и с узорами.

Среди множества индийских мечей наиболее глубокое впечатление произвел на Бируни меч под названием «маджли», на котором были изображены животные и деревья. Стоимость его равнялась цене лучшего слона. Но если на мече изображались человеческие фигуры, такое оружие стоило еще дороже.

Узоры, рисунки на металле были главной отличительной особенностью булатных мечей.

Нa одних булатах узоры были видны невооруженным глазом сразу после полировки. На других они появлялись только после травления соком растений.

Узор мог быть крупным и мелким.

Другим местом, где производили отличные булаты, стал город Дамаск. В средние века из Дамаска мечи поступали в разные страны. Их можно было увидеть даже в африканских племенах. Булатная сталь позже стала называться дамасской.

Как удавалось людям средневековья создавать из нержавеющей стали, необычайно прочной, булатные клинки, было загадкой.

Разные ученые во многих странах пытались разгадать тайну булата. Знаменитый английский физик Михаил Фарадей пытался получить булат путем добавки к стали алюминия и платины.

В конце концов, тайна булатной стали была раскрыта уральским металлургом Павлом Аносовым. После долгих лет поисков, проб и ошибок, в 1837 году ему удалось изготовить в городе Златоусте булатный клинок. Аносову было известно, что в Москве в XVI-XVII веках еще существовало производство булатов.

Он был знаком с документами той поры, где встречались записи: «Сабельная полоса, булат синий, московский выков», «сабля полоса русская с долами на булатное дело». К концу XVII века искусство изготовления булата, пришло в упадок и постепенно забылось. И вот спустя двести с лишним лет в Златоусте появился булат. «Полоска булата сгибалась без малейшего повреждения, издавала чистый и высокий звон. Отполированный конец крошил лучшие английские зубила, тогда как отпущенный — легко принимал впечатления и отсекался чисто и ровно», — писал Аносов в «Горном журнале».

Уготовленный в Златоусте булатный клинок был золотистого отлива и с крупным сетчатым или коленчатым узором.

Знатоки считали, что такой узор — признак высшего сорта булата. Сделанный на Златоустовской фабрике клинок разрубал гвозди и кости, не повреждая лезвие. С помощью этих клинков можно было проделать тот же фокус с тонким газовым покрывалом, которым поразил Саладин короля Ричарда.

Люди так долго бились над загадкой булата, что были крайне удивлены, когда Аносов сообщил, что булатная сталь представляет собою «железо и углерод и ничего более; все дело в чистоте исходных материалов, в методе охлаждения, в кристаллизации».

Булат и в самом деле оказался высокоуглеродистой сталью без каких-либо особых примесей, являясь продуктом естественной кристаллизации стали, полученной при соединении железа и углерода.

Сущность образования булата заключалась в насыщении сплава большим количеством углерода (около 1,3-1,5%). При медленном охлаждении образовывалось и находилось в некотором излишке соединение железа с углеродом — так называемый цементит, который не растворялся, как бывает в обычной стали, а оставался в железе как бы во взвешенном состоянии. Прослойки цементита обволакивались медленно стынущим мягким железом.

Поэтому при высоком содержании углерода, придающим металлу твердость, булат сохраняет высокую гибкость, упругость, не свойственную обыкновенной стали. Из-за наличия прослоек хрупкого цементита ковка булата должна производиться крайне осторожно, ударами легкого молота, с многократным нагреванием до критической температуры, то есть, до температуры красного каления. Если ее поднять выше, булат потеряет свои основные свойства и свой характерный рисунок. Процесс изготовления булата отличается трудоемкостью, длительностью и требует высокого искусства.

Во время разработки процесса производства булата, Аносов попутно изобрел новый способ получения стали путем сплавления негодных к употреблению железных и стальных обсечков в глиняных горшках, то есть тиглях, при помощи высокой температуры воздушных печей.

Наладив на Урале производство тигельной стали, Аносов сообщил, что она ни в чем не уступает английской литой стали.

В наше время булатная сталь не производится. Дело в том, что она была продуктом ремесленного кустарного производства, и имела в общем-то единственное применение — для изготовления холодного оружия. Зато современная техника нашла много способов получения стали самых разнообразных марок с различными свойствами, которыми не обладала булатная сталь.

Современной технике нужны металлы и сплавы для работы при давлении в сотни и тысячи атмосфер и при глубоком вакууме, когда давление близко к нулю. Хладостойкие стали должны сохранять прочность при температурах, близких к абсолютному нулю (-273°С). Для атомных реакторов нужен металл с наибольшей магнитопроводимостью, для двигателей реактивных самолетов и ракет — сталь, способная сохранять прочность при очень высоких температурах и большой нагрузке.

Первое упоминание о стали уходит в далекие 8-12 века до нашей эры. Уже тогда войска индийского царя Пора имели оружие прочное и острое.

Индийским мастерам удалось получить высокоуглеродистую сталь, названую булатом. Изготовление ее было сложным и секрет производства остался нераскрытым.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]