Как плавят латунь на металлургических заводах и в домашних условиях

Латунь — это сплав на основе меди и цинка. Из него делают различные детали — болты, шурупы, крепления, детали для электрических инструментов, микросхемы и другие. При необходимости латунь можно переплавить в специальной печи, чтобы изготовить из расплава нужную деталь. Но какая температура плавления латуни? Можно ли ее переплавить в домашних условиях? И о чем нужно помнить металлургу во время работы с этим сплавом? В статье эти вопросы будут рассмотрены.

Физические особенности плавки однородных металлов

Латунь — многокомпонентный сплав на основе меди и цинка. В его состав могут входить и некоторые другие компоненты — олово, свинец, железо, никель, марганец. Медь выступает в качестве основного вещества, тогда как дополнительные компоненты улучшают физические свойства материала (прочность, упругость, электропроводность, коррозийный потенциал). Плавление однокомпонентных и многокомпонентных сплавов имеет много отличий. Поэтому перед рассмотрением вопроса расплавки латуни нужно рассмотреть особенности плавления однородного металла на основе меди.

В физике плавкой называют процедуру, при которой твердый металл переходит в жидкое состояние. Чтобы расплавить медь, ее необходимо нагреть до температуры 1.085 градусов по шкале Цельсия. Обычно нагрев осуществляется с небольшой температурной надбавкой (~1150 градусов), поскольку на практике часто применяются медные сплавы с добавлением легирующих веществ, из-за которых повышается температура плавления.

Нагрев на химико-физическом уровне

  1. Атомы меди до нагрева находятся в твердом состоянии. На химическом уровне это значит, что они формируют прочную кристаллическую решетку, которая устойчива к деформации и сохраняет форму при ударе.
  2. При нагреве потенциальная энергия медных атомов увеличивается, что приводит к ухудшению прочности кристаллической структуры материала. Однако материал сохраняет свою твердость, поскольку кристаллическая решетка не разрушается (хотя она становится менее плотной).
  3. При достижении температуры 1.085 градусов атомы меди получают избыточное количество энергии, что происходит к распаду кристаллической решетки сплава. На физическом уровне сплав переходит из твердого состояния в жидкое.
  4. Теперь возможно несколько ситуаций. Рассмотрим первую ситуацию. Если материал продолжать нагревать, то он будет сохранять свое жидкое состояние. При температуре 2.567 градусов медь переходит в газообразное состояние (то есть жидкость начинает кипеть). В металлургии испарение меди выполняют очень редко, поскольку в этом нет практической пользы.
  5. Но возможна и другая ситуация. Если жидкую медь не нагревать после расплавления, то постепенно жидкость начнет остывать. Это приведет к тому, что материал вновь примет твердую форму. На химическом уровне произойдет повторное формирование кристаллической решетки.

Из этих теоретических выкладок можно сделать один простой вывод. Для однокомпонентных составов температура кристаллизации и температура плавления совпадают. На практике регулировать процедуру расплавки просто — нужно лишь уменьшать или увеличивать температура огня. Во время работы также необходимо следить за распределением огня по всей площади металлического объекта. В случае неравномерного распределения температуры отдельные компоненты будут находиться в жидком состоянии, а другие — в твердом.

Медь и ее сплавы, как источник цветного вторичного металла

Взвешивая «чистый» металл и его сплавы на весах прибыльности при сдаче металлолома, можно сказать, что стоимость первого в полтора – два раза выше. Однако весовое содержание меди в металлических конструкциях часто уступает на выходе ее сплавам.

Так, медные сплавы можно обнаружить среди пришедших в негодность изделий сантехники: водопроводные краны, вентили, душевые шланги и трубки. Многие старые светильники, дверная фурнитура также изготовлены из медных сплавов, однако верх пьедестала, по весовому содержанию, занимают радиаторы отопления.

Непосредственно медь стоит искать среди бытовых приборов, желательно уже выработавших свой эксплуатационный ресурс:

ламповый телевизор – 1,5 кг;

Ламповый телевизор с медью

полупроводниковый ТВ приемник – 0,5 кг;

компрессионный холодильник – около килограмма в двигателе, еще столько же могут содержать трубки радиатора;

электродвигатели – в среднем килограмм на киловатт мощности;

Незаслуженно обходят вниманием магнитные пускатели, хотя оборудование помимо обмотки содержит медь в шинах. Небольшое содержание металла, менее килограмма принесут автомобильные стартеры и генераторы, дроссели люминесцентных ламп, трансформаторы, реле, компрессоры холодильников

Смотрите статью – Где искать металлолом меди?

Физические особенности плавки многокомпонентных сплавов

Многокомпонентные составы состоят из нескольких элементов. Это налагает ряд особенностей плавления таких материалов:

  1. Многокомпонентные сплавы состоят из нескольких элементов. Вместе они также формируют прочную кристаллическую решетку. По свойствам такой материал идентичен однокомпонентным сплавам, а иногда и может превосходить их. Основные примеры — более высокая прочность, низкий риск коррозии, более высокий срок хранения и так далее.
  2. При нагреве многокомпонентного сплава увеличивается потенциальная энергия отдельных атомов. Но кристаллическая решетка сохраняет свою прочность, поэтому вещество сохраняет первоначальную форму.
  3. При достижении критической температуры нагрева происходит постепенный распад кристаллической решетки. Но так как в состав сплава входят атомы разных категорий, то распад решетки происходит неравномерно (у разных атомов своя температура кипения). На физическом уровне такое вещество будет представлять собой смесь твердых и жидких фрагментов.
  4. Температура, при которой легкоплавкие атомы начинают переходить в жидкую фазу, называют точкой солидуса. Если уменьшить подачу топлива, то легкоплавкие атомы начнут вновь формировать кристаллическую решетку, что приведет к затвердеванию сплава. Для латуни точка солидуса равна 880 градусов по Цельсию (цинк является более легкоплавким материалом).
  5. Температура, при которой все атомы начинают переходить в жидкую фазу, называют точкой ликвидуса вещества. Точка ликвидуса указывает, как сильно нужно нагреть материал, чтобы он полностью расплавился. Динамика здесь стандартная — при уменьшении подачи огня будет происходить постепенная кристаллизация расплавленных атомов. Для латуни точка ликвидуса составляет 950 градусов по Цельсию.

Чего мы не знали о меди

Одно из преимуществ удивительного металла — изготовленные из него инструменты не дают искр при ударе. Разумно использовать их там, где есть вероятность взрыва.

Шведские ученые придумали способ захоронения радиоактивных отходов. Сейчас на это тратятся огромные средства. А можно просто помещать радиоактивный хлам в медные капсулы с толщиной стенок 5 сантиметров. По расчетам, коррозия их разрушит не раньше, чем через полмиллиона лет.

Многие знают, что Статуя Свободы (та самая, с факелом и в короне) изготовлена из меди. Не целиком, конечно, цветной металл только сверху, внутри стальные конструкции. Ходили слухи, что изготовлена она из уральского металла, но… Официально признано, что тот цветмет из Норвегии.

Вот случай, когда вроде полезное свойство нашего героя стало недостатком. Норвежское грузовое судно затонуло по вине медной руды, которую и везло. Виновата электрохимия. Медь из руды создала гальваническую пару с металлическим корпусом судна, электролитом послужили испарения морской воды. Возникший ток спровоцировал такую коррозию, что она проела обшивку, и в трюмы хлынула вода.

Модникам и модницам

Секрет джинсов «Gold Vision-3000» в медном биокорсете. Медные нити, «встроенные» в модные штаны, помогают предотвращать сосудистые патологии, стимулируют работу органов малого таза. А они влияют на пищеварение, половую функцию, кроветворение, уменьшают вредное воздействие бытовых приборов, влияние электромагнитных полей.

Плавка сплава

Из предыдущей выкладки можно сделать сложный комплексный вывод о плавке латуни. Главный вывод заключается в том, что латунь не имеет единой температуры выплавки из-за особенностей состава сплава. Температура плавления латуни будет находиться в пределах от 880 до 950 градусов по Цельсию (точки солидуса и ликвидуса). Нагревать металл нужно в несколько этапов — сперва расправляется одни компоненты, потому начинает плавиться основное вещество. Кристаллизация латуни будет также происходить по той же схеме — сперва будут затвердевать более легкоплавкие элементы, а потом — более тугоплавкие.

Некоторые другие особенности плавки латуни:

  • Основным видом латуни являются двухкомпонентные сплавы на основе меди и цинка. Именно для эти сплавов температура плавления латуни будет составлять 880-950 градусов. Однако существуют также и другие марки латуни — кремниевые, многокомпонентные и другие. Для этих сплавов точки солидуса и ликвидуса могут отклоняться от заданных значений (а чем больше содержание легирующих добавок, тем сильнее будет отклонение).
  • Удельная теплота плавления латуни составляет примерно 380 килоджоулей энергии. По факту это значит, что для нагрева 1 килограмма латуни на 1 градус следует сообщить детали энергию, размер которой составляет 380 килоджоулей. Для более серьезного нагрева следует пропорционально увеличить количество сообщаемой энергии. На практике чаще всего расплав латуни обычно осуществляется в электрических печах. Поэтому при подборе нагревателя важна его мощность. По факту он должен составлять не менее 25 киловатт — в противном случае металлургу не получится нагреть сплав до нужной температуры.

Применение меди:

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон
  1. https://en.wikipedia.org/wiki/Copper
  2. https://de.wikipedia.org/wiki/Kupfer
  3. https://ru.wikipedia.org/wiki/Медь
  4. https://chemister.ru/Database/properties.php?dbid=1&id=239
  5. https://chemicalstudy.ru/med-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/

Примечание: Фото https://www.pexels.com, https://pixabay.com

карта сайта

медь атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решеткаатом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома электронные формулы сколько атомов в молекуле медисколько электронов в атоме свойства металлические неметаллические термодинамические

Коэффициент востребованности 1 005

Как плавят латунь на металлургических заводах?

Сплав обычно плавят на металлургических заводах, поскольку там созданы благоприятные условия для переплавки. При заводской плавке материал сохраняет все свои физические свойства — прочность, электропроводность, сохранение формы при деформации и так далее. Технология переплавки латуни на заводе зависит от того, к какой категории латуней относится материал. Двухкомпонентные сплавы (с добавлением цинка) обычно плавят в индукционных печах, которые имеют кварцевое покрытие стен. Такое покрытие минимизирует перегрев печи, а также защищает стенки от деформации и растрескивания.

Двойные латуни расплавляются при относительно невысоких температурах (точка ликвидуса для них находится в районе 910-930 градусов по Цельсию). Поэтому двойные сплавы нет смысла расплавлять в мощных электродуговых печах. Для расплава рекомендуется использовать защитный слой на основе древесного угля. Также рекомендуется введение в расплав небольшого количества криолита (порядка 0,01-0,1%) — это способствует снижению металлических дефектов при выплавке. Вместо древесного угля можно использовать флюс, состоящий из стекла и шпата в пропорции 1 к 1.

Для переплавки двухкомпонентных латуней необходимо сперва выполнить расплав меди, а потом цинка. Чтобы расплавить металл, нужно нагреть его до температуры порядка 1000-1100 градусов. После этого следует добавить цинк и легирующие добавки при их наличии. Обратите внимание, что раскисление латуни производить не нужно, поскольку эту функция прекрасно выполняет цинк.

Сложные не кремнистые латуни

Переплавляют по аналогичному алгоритму. В состав таких сплавов цинк входит в небольших количествах. Поэтому такой металл нужно раскислить, чтобы сохранить его все полезные физические свойства. Для раскисления подходит фосфор, хотя можно использовать и другие раскислители. При расплавлении в сложной латуни часто образуются крупные мусорные фракции — чтобы избавиться от них, следует выполнить рафинирование марганцем или фильтрацию.

Сложные кремнистые латуни

Имеют сложную динамику кристаллизации, что объясняется наличием в составе сплава кремния и алюминиевых присадок. Из-за наличия этих компонентов у сплава повышается склонность к поглощению атмосферного водорода при высоких температурах (более 1000 градусов).

При нагреве сплава до температуры выше 1100 градусов могут происходить порционные выделения растворенного углерода, что может приводит к образованию «волдырей» на сплаве после его застывания. Поэтому к переплавке кремнистых сталей подойти ответственно. Чтобы избежать выделения растворенного углерода, следует вести переплавку в кислой среде. Хорошо подойдет насыщение воздуха кислотным флюсом на основе карбоната натрия, фторида кальция и оксида кремния. Важно следить за температурой нагрева, поскольку защитные свойства газового окислителя заметно снижаются при достижении температуры 1100 градусов.

После расплавления всех компонентов в защитной среде необходимо выполнить обязательную проверку металла по всем основным показателям (излом, насыщенность, наличие загрязняющих компонентов и так далее).

Способы изготовления и характеристики

Физические данные

Характеристики сплава определяются его химическим составом и могут изменяться в некоторых пределах. Бронза менее подвержена коррозии и обеспечивает лучшее скольжение металла по металлу, чем латунь. У неё выше прочность и она менее подвержена атмосферным воздействиям (вода и воздух) и лучше сопротивляется солям и органическим кислотам. Легко поддаётся механической обработке, её можно паять и скреплять сварочными работами. Некоторые физические характеристики бронзы:

  • удельный вес от 7,8 до 8,7 тонны/куб. метр;
  • температура плавления бронзы – плавится при нагревании от 930 до 1140 градусов;
  • изменения цвета от красного – цвета меди, до белого – цвета олова;
  • стойкость к износу и хорошее скольжение по металлу предопределяет сферу применения в качестве подшипников скольжения, они хорошо работают в любых температурных условиях;
  • отмечается высокая электропроводимость и передача тепла, стойкость к паровому воздействию, что способствует изготовлению деталей для техники, работающей в экстремальных ситуациях.

Статья в тему: Портативная газовая плита как пользоваться

Как изготовить бронзу

Плавление и смешивание расплавов меди и присадок разных металлов, позволяющих придать сплаву те или иные требуемые характеристики, приводит к получению такого металла-сплава, как бронза. В технологическом процессе изготовления задействованы электрические печи индукционного типа и тигельные горны, с их помощью можно изготовить любые сплавы с медью.

Плавление производится с флюсовыми добавками, при этом исходным сырьём для плавки может быть как медная руда, так и лом меди. Как правило, медный лом добавляется в расплав вмести с присаживаемым металлом в процессе плавки. При плавке только из медной руды выполняются следующие операции:

  • печь разогревают, закладывают в неё медную руду с флюсовыми добавками, и плавят при температуре около 1200 градусов;
  • добавляют химический окислитель – фосфористую медь, половина могла быть загружена в составе флюса, а остаток дополнительно загружается ковшом;
  • при плавлении в раскисленный расплав меди добавляют присадочные металлы, предварительно подогретые до ста градусов;
  • после получасового отстаивания расплава, с его поверхности снимают всплывший шлак, и полученный сплав распределяют по формам.

При использовании медного лома процедура изготовления бронзы такая же.

Можно ли расплавить латунь в домашних условиях?

Сплав в домашних условиях плавить не рекомендуется.

Основные проблемы:

  • Температурные ошибки. Для полного расплавления меди и цинка придется довести объект до температуры не менее 950 градусов. Сделать такую печь на практике не слишком легко, поскольку для этого понадобятся огнеупорные детали. Также Вам придется поддерживать высокую температуру в течение длительного времени, что приведет к большому расходу топлива.
  • Коррозия и образование оксидов. При расплавлении латунной детали частицы меди и цинка начнут активно вступать в реакцию с воздухом. Это может привести к образованию сложных соединений. В состав которых помимо меди и цинка входят кислород, азот, углерод, другие вещества. Из-за этих добавок значительно повышается хрупкость выплавленной детали, что может сделать ее бесполезной.

Именно поэтому латунь рекомендуется переплавлять на специальных фабриках или заводах, где созданы необходимые условия (температура, защитная среда и так далее). Однако на практике многие люди все же выполняют переплавку латуни и в домашних условиях. В результате домашнего литья можно получить деталь среднего качества. Такие детали не рекомендуется использовать на объектах, сопряженных с опасностями (автомобильные детали, электрическое оборудование, арматура на больших зданиях).

Советы

Однако такие детали можно применять в домашнем хозяйстве (скажем, можно сделать латунные болты, шурупы или уголки для крепления объектов интерьера). Для выплавки латуни в домашних условиях нужно сделать печь, которая способна выдерживать до температуры выше 1000 градусов по цельсию (температура плавления в домашних условиях стандартная — 880-950 градусов). Чтобы укрепить печь, рекомендуется установить на печь металлический каркас (оптимальный сплав — легированная сталь).

Также Вам нужно будет изготовить или купить тигель, в котором будет происходить выплавка металла. Тигель следует делать из графита или шамотного кирпича. Эти материалы не плавятся при высоких температурах (температура расплава латуни в домашних условиях составляет 950 градусов). Также эти материалы не крошатся и не вступают в контакт с воздухом, что хорошо влияет на качество выплавки. Делать такую печь рекомендуется из огнеупорного кирпича, а для соединения отдельных элементов друг с другом следует использовать термостойкий раствор.

Для нагрева можно использовать древесный уголь. Главный плюс угля заключается в том, что его применение минимизирует риск образования вредоносных добавок, ухудшающих качество выплавленной детали. К сожалению, применение угля для переплавки латуни — очень дорогое мероприятие. Поэтому для переплавки следует применять электрические индукторы-нагреватели. Минимальная мощность тока должна составлять 25 киловатт, поскольку в противном случае не удастся получить нужную температуру для расплавления латуни.

Процедуру плавления следует проводить в хорошо вентилируемом помещении. Причина — расплавленный цинк будет вступать в реакцию с кислородом, что приведет к образованию оксидов. Цинковые оксиды в больших количествах могут представлять опасность. Для расплавки Вам также понадобятся инструменты — перчатки, мощная маска и щипцы для перемещения тигла с расплавленным металлом. Щипцы рекомендуется покупать из инструментальной стали, поскольку такая сталь устойчива к воздействию высоких температур.

Техника безопасности

Для проведения всех операций с металлами, разогреваемыми до очень высоких температур необходимо заботиться о своей безопасности и минимизации влияния процесса на здоровье. Следует помнить, из каких металлов состоит латунь, при какой температуре плавится конкретный образец и каким образом она достигается. Вот несколько советов:

  1. Используйте защитные перчатки, одежду из материалов, плохо поддающихся горению — шерсти, хлопка и других. Не стоит использовать одежду из синтетики, она может очень быстро загореться.
  2. Позаботьтесь о защите глаз и лица с помощью очков и масок, так как случайная капля расплавленного металла может стоить вам зрения или причинить серьёзный ожог коже лица.
  3. Литьё необходимо выполнять в месте с достаточной вентиляцией, так как в его процессе выделяются вещества, которые, приобретая достаточную концентрацию, могут нанести большой вред вашему здоровью.
  4. Для того чтобы свести к минимуму риски поджога или случайного воспламенения близлежащих предметов, можно застелить поверхность, на которой будет располагаться печь асбестовым листом. Опять же, не забывайте при этом о хорошей вентиляции.

Следуя таким правилам, вы сможете безопасно и эффективно выполнять действия с раскалёнными или расплавленными металлами, не опасаясь причинения вреда себе и окружающим.

Биологическая роль меди

Организм здорового человека должен содержать не менее 100 г микроэлемента меди. Он выполняет важную биологическую роль:

  • Принимает участие в усвоении и выработке железа.
  • Компонент большинства ферментов, принимающих участие в окислительно-восстановительных процессах.
  • Обеспечивает наполнение мозга, тканей необходимым количеством кислорода.
  • Без элемента невозможно нормальное формирование сухожилий, скелета, мышц, хрящей.
  • Способствует образованию эритроцитов, гемоглобина.
  • В детском возрасте способствует росту костей.
  • Дефицит вещества приводит к ревматоидным артритам, аутоиммунным заболеваниям, воспалительным процессам в костях, тканях.
  • Делает стенки сосудов прочными, эластичными.
  • Поддерживает упругость кожи.

Свое название вещество получила от греческого слова «Кипр»

Его важность была установлена в 1928 году, в результате многочисленных научных исследований

Медь. Описание

Медь. Это необходимый организму человека минерал, который содержится в естественной форме в продуктах питания, а также доступен в виде пищевых добавок.

Медь является кофактором нескольких ферментов (известных как купроферменты), участвующих в выработке энергии в теле человека, метаболизме железа, активации нейропептидов, синтезе соединительной ткани и нейротрансмиттеров.

Одним из распространенных купроферментов является церулоплазмин (ЦП), который участвует в процессе метаболизма железа и составляет более 95% от общего количества меди в плазме здорового человека.

Медь также принимает участие во многих физиологических процессах, таких как:

  • ангиогенез (процесс образования новых кровеносных сосудов в органах или тканях, в ходе которого происходит реорганизация первичной капиллярной сети, которая сокращается до более простой и четкой системы капилляров, артерий и вен.)
  • нейрогормональный гомеостаз (саморегуляция)
  • регуляция экспрессии генов (реализация заложенной информации в генах, то есть синтез РНК и белков. Другими словами — регуляция активности генов)
  • развитие мозга
  • пигментация и функционирование иммунной системы

Кроме того, защита от окислительного повреждения зависит в основном от медьсодержащих супероксиддисмутаз.

Достаточно большое количество как растительной, так и пищи животного происхождения содержит в своем составе медь. В среднем человек, с питанием, потребляет меди примерно 1400 мкг/ день (мужчины) и 1100 мкг/день (женщины). Далее почти вся потребленная медь абсорбируется в верхней тонкой кишке. Примерно две трети всех запасов меди в организме сосредотачивается в скелете и мышцах.

Обычно организм накапливает небольшое количество меди, у взрослого человека общее количество этого вещества в теле не превышает 50-120 мг.

Большая часть меди из организма выводится с желчью, и небольшое количество с мочой. Общие фекальный потери меди желчного происхождения и не абсорбированной диетической меди составляет около 1 мг/день.

Уровни меди в организме гомеостатически поддерживаются поглощением меди из кишечника и выделением ее печенью в желчь, чтобы снизить риски возникновения дефицита и токсичности меди.

В клинической практике статус меди обычно не оценивается, и не было выявлено никаких биомаркеров, которые точно и достоверно бы оценивали ее статус. При исследованиях на людях обычно измеряют активность меди и купрофермента в плазме крови, потому что люди с известным дефицитом меди часто имеют низкие уровни меди и ЦП в крови. Однако на уровень ЦП в плазме и уровень меди могут влиять и другие факторы, такие как эстрогенный статус, беременность, инфекции, воспаления и некоторые виды рака.

Нормальная концентрация в сыворотке составляет 10-25 мкмоль/литр (63,5-158,9 мкг/дл) для меди и 180-400 мг/л для ЦП.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]