Сталь 03Х12Н5М6К13Л (ВНЛ-8) Сталь 05Х18АН5ФЛ Сталь 05Х18АН6М2ФЛ Сталь 06Х12Н3ДЛ Сталь 06Х17Н10Г2С2Л (ВНЛ-12) Сталь 07Х17Н16ТЛ Сталь 07Х18Н10Г2С2М2Л Сталь 07Х18Н9Л (5Х18Н9Л) Сталь 07Х20Н25М3Д2ТЛ Сталь 07Х21Н9С2М (ВНЛ-4) Сталь 07Х24Н8М2Д3Л (ВКЛ-1) Сталь 07ХН25МДТЛ Сталь 08Г2ДНФЛ Сталь 08Х12Н4ГСМЛ Сталь 08Х13ГДЛ Сталь 08Х13Л (ЭИ496Л) Сталь 08Х14Н5М2ДЛ (ВНЛ-3) Сталь 08Х14Н7МЛ (ВНЛ-1; 5Х14Н7МЛ) Сталь 08Х14НДЛ Сталь 08Х15Н4ДМЛ Сталь 08Х17Н34В5Т3Ю2Л (5Х17Н34В5Т3Ю2Л) Сталь 08Х17Н34В5Т3Ю2РЛ Сталь 09Х16Н4БЛ (10Х16Н4БЛ) Сталь 09Х17Н3СЛ (10Х17Н3СЛ) Сталь 10Х12НДЛ (0Х12НДЛ) Сталь 10Х14Н5М2Л (ВНЛ-2) Сталь 10Х14НДЛ (5Х14НДЛ) Сталь 10Х17Н10Г4МБЛ (ЭИ402МЛ; 10Х17Н10Г4МБЛС) Сталь 10Х17Н13Г4Д2ТЛ (0Х17Н13Г4Д2ТЛ) Сталь 10Х18Н11БЛ (5Х18Н11БЛ) Сталь 10Х18Н12М3Л Сталь 10Х18Н3Г3Д2Л (0Х18Н3Г3Д2Л) Сталь 10Х18Н9БЛ (Х18Н9БЛ) Сталь 10Х18Н9Л Сталь 10Х21Н6М2Л Сталь 10Х28Н6М3АЛ Сталь 110Г10Л Сталь 110Г13Л (Г13Л) Сталь 110Г13ФТЛ Сталь 110Г13Х2БРЛ Сталь 110Г13ХБРЛ Сталь 110Г13ХНЛ Сталь 110Г8Л Сталь 120Г10ФЛ Сталь 120Г13Х2БЛ Сталь 12МХЛ (12ХМЛ) Сталь 12Н2ДМЛ Сталь 12Х13Н3М2Л (ВНЛ-9) Сталь 12Х16Н8М2БЛ (ВНЛ-11) Сталь 12Х18Н12БЛ (10Х18Н12БЛ) Сталь 12Х18Н12М3ТЛ Сталь 12Х18Н6ФАЛ Сталь 12Х18Н7М2ФАЛ Сталь 12Х18Н9ТЛ (10Х18Н9ТЛ) Сталь 12Х19Н7Г2САЛ Сталь 12Х21Н5Г2САЛ Сталь 12Х21Н5Г2СЛ Сталь 12Х21Н5Г2СМ2Л Сталь 12Х21Н5Г2СТЛ Сталь 12Х25Н5ТМФЛ (10Х25Н5ТМФЛ) Сталь 12ХГФЛ Сталь 130Г14ХМФАЛ Сталь 13НДФТЛ Сталь 13Х11Н5М5Л (ВНЛ-5) Сталь 14Х18Н4Г4Л (10Х18Н4Г4Л) Сталь 14Х2ГМРЛ Сталь 15ДНМЛ Сталь 15Х11МФБЛ Сталь 15Х13Л (10Х13Л) Сталь 15Х14НЛ Сталь 15Х18Н10Г2С2М2Л Сталь 15Х18Н10Г2С2М2ТЛ Сталь 15Х18Н10Л Сталь 15Х18Н12С4Л Сталь 15Х18Н22В6М2Л Сталь 15Х18Н22В6М2РЛ Сталь 15Х23Н18Л Сталь 15Х25ТЛ Сталь 16ГДНМЛ Сталь 16Х18Н12С4ТЮЛ (ЭИ654ЛК) Сталь 18Х12НМВФЛ Сталь 18Х25Н19СЛ (15Х25Н19СЛ) Сталь 20ГСНДМЛ Сталь 20Н3ДМЛ Сталь 20ФТЛ Сталь 20Х12ВНМФЛ Сталь 20Х13Л Сталь 20Х20Н14С2Л Сталь 20Х21Н46В8Л Сталь 20Х21Н46В8РЛ Сталь 20Х25Н19С2Л (15Х25Н19С2Л) Сталь 20Х5МЛ Сталь 20Х5ТЛ Сталь 20Х8ВЛ Сталь 20ХГСНДМЛ Сталь 20ХГСФЛ Сталь 25НЛ Сталь 25Х2НМЛ Сталь 27ХГСНМДТЛ (27ХГСНМДТЛА) Сталь 27ХГСНМЛ Сталь 27ХН2МФЛ Сталь 30Х16Н22В6БЛ (ЦЖ-13Л) Сталь 30Х24Н10АТС2Л Сталь 30Х28Н6М2Л Сталь 30ХГ2СТЛ Сталь 31Х19Н9МВБТЛ (ЭИ572Л; 30Х19НМВБТЛ) Сталь 35Х18Н24С2Л (30Х18Н24С2Л) Сталь 35Х23Н7СЛ (25Х23Н7СЛ) Сталь 35ХМФЛ Сталь 40Г17ХН2 (ММЛ-1) Сталь 40Х17СЛ (GX40CrSi17) Сталь 40Х24Н12СЛ (30Х24Н12СЛ) Сталь 40Х27Н4СЛ (GX40CrNiSi27-4) Сталь 40Х29СЛ (GX40CrSi29) Сталь 40Х9С2Л Сталь 45Г17НМФ (ММЛ-3) Сталь 45Г18Х2ТЮЛ Сталь 45Х17Г13Н3ЮЛ Сталь 4Х4Н5МК (ВКЛ-4М) Сталь 50Х24Н12САЛ Сталь 55Х18Г14С2ТЛ Сталь 60Г17ХН2Ф (ММЛ-2) Сталь 60Х16Г13ТЛ Сталь 70ХЛ Сталь 85Х4М5Ф2В6Л (Р6М5Л) Сталь 90Г14Ю2 Сталь 90Х28МФТАЛ Сталь 90Х4М4Ф2В6Л (Р6М4Ф2Л) Сталь 95Х18М (ВНЛ-13) Сплав АНВ-300 Сплав ВЖЛ8 Сталь Г13Х2Л Сталь Г13ХЛ Сталь Х23Н26М3ТФЛ Сталь Х23Н28М3Д3ТЛ Сталь Х25Н13АТЛ
Обозначения
Название | Значение |
Обозначение ГОСТ кириллица | 110Г13Л |
Обозначение ГОСТ латиница | 110G13L |
Транслит | 110G13L |
По химическим элементам | 110Mn13 |
Название | Значение |
Обозначение ГОСТ кириллица | Г13Л |
Обозначение ГОСТ латиница | G13L |
Транслит | G13L |
По химическим элементам | Mn13 |
Буквенные обозначения сталей и их расшифровка
Химический состав многих легированных конструкционных сталей определен ГОСТ 4543–71 «Прокат из легированной конструкционной стали. Технические условия». Этот же стандарт определяет основные буквенные символы для обозначения легирующих элементов. Необходимо учитывать, что в настоящее время выпускают стали с добавками элементов, обозначение которых не предусмотрено стандартом. В этом случае элементы в марке стали обычно обозначают по первым буквам названия.
Условные буквенные обозначения основных легирующих элементов приведены ниже.
- А – азот*
- Б – ниобий
- В – вольфрам
- Г – марганец
- Д – медь
- Е – селен
- К – кобальт
- Л – бериллий*
- М – молибден
- Н – никель
- П – фосфор
- Р – бор*
- С – кремний
- Т – титан
- Ф – ванадий
- Х – хром
- Ц – цирконий
- Ч – РЗМ
- Ю – алюминий
- Ш – магний*
* – если буква стоит в середине маркировки, например 16Г2АФ
Описание
Сталь 110Г13Л применяется: для изготовления отливок корпусов вихревых и шаровых мельниц, щек и конусов дробилок, трамвайных и железнодорожных стрелок и крестовин, гусеничных траков, звездочек, зубьев ковшей экскаваторов и других деталей, работающих на ударный износ; деталей мельничных футеровок горно-металлургического оборудования; остряковых крестовин стрелочных переводов марок 1/11 и 1/9 к рельсам типов Р75, Р65, Р50 с литыми сердечниками.
Примечание
Сталь высокомарганцовистая износостойкая аустенитного класса. Сталь обладает высоким сопротивлением к износу при одновременном воздействии высоких давлений или ударных нагрузок.
Применение стали Гадфильда
Сталь Гадфильда применяется во многих отраслях производства, так как обладает весьма важными и полезными качествами. При изготовлении изделий из этого материала можно быть уверенным, что он не подведёт, так как прочность и другие положительные качества стали Гадфильда неоспоримы.
Высокая износоустойчивость и прочность напрямую повлияли на популярность этого материала. Различные предприятия, занимавшиеся изготовлением разными видами изделий, применяли этот материал, так как именно эта сталь могла обеспечить необходимую прочность продукции.
Поэтому совершенно неудивительно, что сталь Гадфильда применяется в изготовлении огромного количества разнообразной продукции. С её помощью изготавливаются траки гусениц танков (как было уже упомянуто выше), машин, тракторов, рельсовые крестовины, щёки дробилок, стрелочные переводы, которые способны осуществлять работу в тяжёлых условиях истирания и ударных нагрузок. К тому же именно сталь Гадфильда используется для изготовления оконных решёток для тюремных учреждений.
Кстати, насчёт последнего пункта можно сказать интересный факт. Дело в том, что использование стали Гадфильда для изготовления оконных решёток для тюрем, в шутку называют издевательством по отношению к заключённым. Дело в том, что классический побег предполагает использование ножовки, которой перерезают металлическую решётку, после чего можно совершать побег. В истории зафиксировано огромное количество таких побегов по банальному сценарию с использованием ножовки для резки металла. Кстати, интересный факт: по сведениям тюремных надзирателей, именно ножовки занимают первое место в топе предметов, которые тайком пытаются пронести заключённым их друзья и близкие.
И если в случае использования ножовки по отношению к обычным оконным решёткам, у заключённых ещё были кое-какие шансы для спасения, то использование стали Гадфильда их просто не оставляет. Дело в том, что эта сталь, в отличие от других, обладает очень интересным свойством, которое заключается в том, что в процессе резания прутьев решётки происходит сильный наклёп поверхности, на которую оказывается воздействие. Это влияет на упрочнение стали, на увеличение её твёрдости до твёрдости самой ножовки и даже выше. В результате этого даже не стоит надеяться на положительный результат такого тщетного предприятия.
Стандарты
Название | Код | Стандарты |
Отливки со специальными свойствами (чугунные и стальные) | В83 | ГОСТ 21357-87, ГОСТ 2176-77, KSt 81-033:2009, TУ 48-22-98-83, TУ 14-1-563-73, TУ 14-1-641-73, TУ 4112-78269737-001-2005 |
Рельсы. Накладки. Подкладки. Костыли | В42 | ГОСТ 7370-98, ГОСТ 28370-89, TУ 32-ЦП-671-93 |
Отливки стальные | В82 | ГОСТ 977-88, ОСТ 24.920.01-80, KSt 81-038:2009, TУ 108.11.549-87, TУ 14-1-4788-90 |
Химический состав
Стандарт | C | S | P | Mn | Cr | Si | Ni | Fe | Cu | Ti |
ГОСТ 977-88 | 0.9-1.5 | ≤0.05 | ≤0.12 | 11.5-15 | ≤1 | 0.3-1 | ≤1 | Остаток | — | — |
ГОСТ 2176-77 | 0.9-1.4 | ≤0.05 | ≤0.12 | 11.5-15 | ≤1 | 0.3-1 | ≤1 | Остаток | ≤0.3 | — |
ГОСТ 7370-98 | 1-1.3 | ≤0.02 | ≤0.09 | 11.5-16.5 | — | 0.3-0.9 | — | Остаток | — | — |
KSt 81-038:2009 | 0.9-1.1 | ≤0.05 | ≤0.1 | 11.5-14.5 | ≤1 | 0.2-0.6 | ≤0.5 | Остаток | — | ≤0.1 |
ГОСТ 21357-87 | 0.9-1.2 | ≤0.02 | ≤0.02 | 11.5-14.5 | ≤0.3 | 0.4-0.9 | ≤0.3 | Остаток | ≤0.3 | — |
Fe — основа. По ГОСТ 21357-87 для повышения износостойкости отливок допускается микролегирование стали титаном до 0,05%, ванадием до 0,30%, молибденом до 0,20%. По KSt 81-038:2009 приведен химический состав стали с более узкими пределами по содержанию компонентов, применяемый для изготовления износостойких деталей мельничных футеровок. По ГОСТ 7370-98 при изготовлении сердечников и цельнолитых крестовин стрелочных переводов допускается по согласованию изготовителя с потребителем вводить в сталь легирующие элементы и модифицирующие добавки. По ГОСТ 2176-77 химический состав приведен для стали марки 110Г13Л. Отливки допускается изготавливать из стали с повышенным содержанием углерода, но не более 1,50 %. Допускаются отклонения от норм химического состава: по углероду ±0,020 %; по кремнию ±0,10 %; по марганцу, меди, хрому и никелю ±0,10 % каждого; по титану и вольфраму ±0,050 % каждого; по ванадию, молибдену и ниобию ±0,020 % каждого.
Сталь марки 110Г13Л
Марка: 110Г13Л Класс: Сталь для отливок обыкновенная Вид поставки: отливки: ГОСТ 2176-77. Использование в промышленности: корпуса вихревых и шаровых мельниц, щеки и конуса дробилок, зубья и передние стенки ковшей экскаваторов, железнодорожные крестовины и др. тяжелонагруженные детали, работающие под действием статических и высоких динамических нагрузок и от которых требуется высокая износостойкость. |
Химический состав в % стали 110Г13Л | ||
C | 0,9 — 1,4 | |
Si | 0,8 — 1 | |
Mn | 11,5 — 15 | |
Ni | до 1 | |
S | до 0,05 | |
P | до 0,12 | |
Cr | до 1 | |
Cu | до 0,3 | |
Fe | ~83 |
Зарубежные аналоги марки стали 110Г13Л | |||
США | A128, J91109, J91119, J91129, J91139, J91149 | Германия | 1.3401, 1.3802, GX120Mn12, GX120Mn13, X120Mn12 |
Япония | SCMnH1, SCMnH11, SCMnH2, SCMnH3 | Франция | Z120M12, Z120M12M |
Англия | BW10 | Италия | GX120Mn12 |
Испания | AM-X-120Mn12, F.240, F.8251, X120Mn12 | Китай | ZGMn13-1, ZGMn13-1-4, ZGMn13-2, ZGMn13-3 |
Швеция | 2183 | Венгрия | X120Mn13 |
Польша | C120G13, L120G13 | Румыния | T105Mn120, T130Mn135 |
Чехия | 17618, 422920 | Финляндия | G-X120Mn13 |
Австрия | BOHLERK700 | Юж.Корея | SCMnH1 |
Норвегия | 1699 |
Дополнительная информация и свойства |
Свариваемость материала: не применяется для сварных конструкций. Флокеночувствительность: не чувствительна. Склонность к отпускной хрупкости: не склонна. Обрабатываемость резанием: HB 229, К υ тв. спл=0,25 Температура начала затвердевания, °С: 1350-1370 Показатель трещиноустойчивости, Кт.у.: 0,4 Склонность к образованию усадочной раковины, Ку.р.:1,7. Жидкотекучесть, Кж.т: 0,8. Линейная усадка, %: 2.6-2,7 Склонность к образованию усадочной пористости, Ку.п.:2,5 |
Механические свойства отливок стали 110Г13Л при различных температурах испытания | ||||||
Температура испытаний, °С | σ0,2 (МПа) | σв(МПа) | δ5 (%) | ψ % | KCU (Дж/см2) | НВ |
20 -20 -40 -60 -80 | 360-380 | 654-830 | 34-53 | 34-43 | 260-350 240-320 220-300 190-300 90-210 | 186-229 |
Предел выносливости стали 110Г13Л | ||
σ-1, МПА | n | Термообработка |
176-196 | 106 | σв=640-710 МПа |
Предел длительной прочности стали 110Г13Л
σ2001000=882 МПа, σ5501000=107 МПа, σ3001000=686 МПа, σ4001000=441 МПа
Коррозионная стойкость стали 110Г13Л | |
Среда | Глубина коррозии, мм/год |
КТВ 3% раствор NaCl | 0,043 0,081 |
Типичный пример использования стали 110Г13: сталь используется для электрошлаковой наплавки — изготовление биметаллических бил дробилок (основа — низкоуглеродистая сталь). Технология электрошлаковой наплавки предусматривает использование плавящегося мундштука с подачей электродной проволоки Св-08 диаметром 4 мм и шихтового материала, состоящего из смеси доменного и электроферромарганца в соотношении 4:1. Шихту подают через тарельчатый питатель, приводимый в движение механизмом подачи проволоки. Режим наплавки: Iс = 630 A; Uc = 22 В; hs =30 мм; ve = 104 м/ч; производительность питателя 50 г/мин.
Глубина проплавления основного металла 3-5 мм. Наплавляют слой сечением 25 X 40 мм по длине била 850 мм. Начальный и конечный участки наплавленного слоя удаляют газовой резкой, погружая била в воду, чтобы исключить возможность перегрева слоя. Места реза зачищают наждачным кругом.
Химический состав наплавленного слоя: 0,9-1,1% С; 13,5 — 14% Мn; 0,4-0,5% Si; 0,018-0,023% S; 0,08-0,09% Р. Электрошлаковый процесс обеспечивает более благоприятный термический цикл по сравнению с дуговым, меньшую склонность к образованию горячих трещин. Стойкость бил увеличивается в 8-9 раз.
Представляет интерес технология одновременной горизонтальной электрошлаковой наплавки серии бил шахтных мельниц. После зачистки наплавляемой поверхности била укладывают в специальные кондукторы, закрепленные на замкнутой ленте транспортера. Между ними устанавливают медные пластины-прокладки толщиной 10 мм. Наплавляемая поверхность бил и медные прокладки образуют сплошную полосу, на которую подают шихту и флюс. Слой флюс — шихта — флюс расплавляют гребенкой из низкоуглеродистых проволок, подаваемых наплавочным аппаратом. Ниже приведен режим наплавки:
Сила тока, А | 2500—3500 |
Напряжение, В | 32—36 |
Число проволок, шт. | 6 |
Диаметр проволоки, мм | 3 |
Скорость, м/ч: подачи проволоки наплавки | 120 3.4 |
Расход материалов на одно било (сплав сталинит), кг: феррохром ферромарганец проволока Св-08А флюс АН-348-А | 0.46 0.38 1.1 0.2 |
При горизонтальной электрошлаковой наплавке большинство операций механизировано. Дальнейшее совершенствование техники и технологии наплавки, а также повышение точности размеров заготовок бил могут позволить полностью автоматизировать процесс наплавки. Износостойкость наплавленных бил в 3 раза выше, чем ненаплавленных. После окончания операции наплавки медные пластины-прокладки вынимают, и била отделяют одно от другого.
Разработана и изготовлена промышленная установка У-305 с источником питания ТШН-15, на которой наплавляют чугунные и стальные валки штрипсового стана «300» и двух проволочных станов «250-1» и «250-2». Электрошлаковую наплавку осуществляют трубчатыми электродами D 300 мм, отлитыми центробежным методом из легированного чугуна. Длина бочки валка 450 мм, общая длина 1400 мм, материал валка — чугун с шаровидным графитом. Рабочий слой — отбеленный хромоникелевый чугун типа нихард следующего состава: 2,8% С; до 0,3% Si; 0,6% Мn; 0,8% Сr; до 3,8% Ni; до 0,55% Р и до 0,11 % S. Твердость рабочего слоя отбеленного чугуна НВ 560-630, толщина слоя 25-35 мм. Она в 2,5-3,5 раза превышает толщину допускаемого износа.
Для наплавки валков используют флюс АНФ-14. Начинать процесс можно по принципу жидкого старта или при помощи специальной смеси, содержащей флюс АНФ-14, стальную стружку и прокатную окалину. Некоторые параметры режима наплавки приведены в таблице ниже.
Таблица 9.60 | ||||||||||
N пп | Материал валка | Размеры бочки, мм | Температура предварительного подогрева, °C | Начало процесса | Рабочий режим | |||||
Диаметр | Длина | UC, B | IC, A | t, мин | UC, B | IC, A | t, мин | |||
1 | Сталь 45 | 350 | 450 | 200-250 | 49 | 3000 | 5 | 43-40 | 5000 | 80 |
2 | Чугун | 337 | 705 | 100-150 | 46 | 3000 | 5 | 40-37 | 5000 | 140 |
3 | Сталь 45 | 350 | 450 | 20 | 49 | 3000 | 7 | 46-43 | 6500 | 60 |
4 | Сталь 45 | 350 | 450 | 150-200 | 46 | 3000 | 10 | 49-37 | 6000 | 67 |
5 | Чугун | 337 | 705 | 200-250 | 46 | 3000 | 5 | 40-37 | 5000 | 120 |
Производительность установки составляет 120-150 кг/ч. Химический состав (%) наплавленного и электродного металла приведен в таблице ниже.
Порядковые номера табл. 9.61 соответствуют номерам табл. 9.60.
Исследование микроструктуры наплавленного слоя (№ 3, табл. 9.60) показало, что она довольно сложна и состоит из мартенсита, нижнего бейнита, перлита, остаточного легированного аустенита и цементитной составляющей.
Таблица 9.61 | ||||||||||
N пп | Металл | Cобщ | Cсвоб | Mn | Si | S | P | Cr | Ni | Mo |
1 | Наплавленный | 3.45 | 2.76 | 0.61 | 2.2 | 0.043 | 0.6 | 0.88 | 1.07 | 0.76 |
Электродный | 3.65 | — | 0.81 | 2.43 | 0.116 | 0.4 | 0.9 | 1.24 | 0.9 | |
2 | Наплавленный | 3.37 | 2.85 | 0.57 | 1.8 | 0.037 | 0.36 | 0.7 | 1 | 0.61 |
Электродный | 3.64 | — | 0.84 | 2.43 | 0.116 | 0.4 | 0.9 | 1.24 | 0.9 | |
3 | Наплавленный | 3.45 | 2.9 | 0.72 | 1.21 | 0.07 | 0.45 | 1.82 | 2.45 | 0.63 |
4 | То же | 3.35 | 0.4 | 0.58 | 1 | 0.045 | 0.46 | 1.54 | 2.45 | 0.71 |
5 | » | 3.69 | 1.6 | 0.54 | 1.68 | 0.074 | 0.54 | 0.65 | 0.87 | 0.58 |
Стойкость наплавленных валков в 2-3 раза выше, чем литых чугунных двухслойных валков. В качестве антикоррозионных покрытий, наносимых электрошлаковой наплавкой, используют высоколегированные стали и сплавы на основе меди. Наиболее удовлетворительные результаты получены при электрошлаковой наплавке с минимальным проплавлением основного металла.
Механические характеристики
Сечение, мм | sТ|s0,2, МПа | σB, МПа | d10 | y, % | кДж/м2, кДж/м2 | Твёрдость по Бринеллю, МПа |
Механические свойства металла для изготовления сердечников и цельнолитых крестовин стрелочных переводов по ГОСТ 7370-98 для металла групп | ||||||
≥355 | ≥880 | ≥30 | ≥27 | ≥245 | — | |
Отливки сечением 30 мм. Закалка 1050-1100 °С, вода. | ||||||
— | 360-380 | 654-830 | 34-53 | 34-43 | 260-350 | 186-229 |
Механические свойства металла для изготовления сердечников и цельнолитых крестовин стрелочных переводов по ГОСТ 7370-98 для металла групп | ||||||
≥355 | 780-880 | 25-30 | 22-27 | 196-245 | — | |
Отливки сечением 30 мм. Закалка 1050-1100 °С, вода. | ||||||
— | 360-380 | 654-830 | 34-53 | 34-43 | 240-320 | 186-229 |
Механические свойства металла для изготовления сердечников и цельнолитых крестовин стрелочных переводов по ГОСТ 7370-98 для металла групп | ||||||
≥355 | 690-780 | 16-25 | 16-22 | 166.6-196 | — | |
Отливки сечением 30 мм. Закалка 1050-1100 °С, вода. | ||||||
— | 360-380 | 654-830 | 34-53 | 34-43 | 220-300 | 186-229 |
Отливки сердечников и цельнолитых крестовин стрелочных переводов по ГОСТ 7370-98 в состоянии поставки | ||||||
— | ≥355 | ≥735 | ≥25 | ≥22 | ≥166.6 | — |
Отливки сечением 30 мм. Закалка 1050-1100 °С, вода. | ||||||
— | 360-380 | 654-830 | 34-53 | 34-43 | 190-300 | 186-229 |
Отливки. Закалка в воду с 1050-1100 °С (после термообработки д.б. чисто аустенитная структура) | ||||||
— | ≥400 | ≥800 | ≥25 | ≥35 | — | ≥190 |
Отливки сечением 30 мм. Закалка 1050-1100 °С, вода. | ||||||
— | 360-380 | 654-830 | 34-53 | 34-43 | 90-210 | 186-229 |