Изменение структуры при добавлении углерода
Показатели прочности и пластичности зависят от структуры и ее изменений при увеличении содержания углерода.
При доле до 0,2% образуется феррит и третичный цементит, дальнейшее увеличение приводит к образованию эвтектоидного феррита и цементита (перлита). Значение показателя перлита постепенно повышается и при углероде 0,8% содержится только перлит. Если содержание более 0,8% появляются иглы вторичного цементита и перлит.
Образование цементита происходит до 2% углерода, при этом снижается прочность из-за хрупкости цементитной сетки по границам перлитных зерен. При превышении этого значения формируется эвтектическая смесь.
Что дает углевод который содержится в стали
Количество цементита будет увеличиваться, как только рост содержания углерода в стали пойдет вверх. При этом доля феррита будет одновременно снижаться. Если между составляющими будет изменено соотношение, то пластичность уменьшится, а прочность и твердость повысится. Прочность будет повышаться до тех пор, пока содержание углерода будет в 1%, но после этого она обязательно уменьшится, потому что будет образовываться цементитная грубая сетка.
Если говорить простым русским языком, то углерод имеет прямое влияние на свойства вязкости. Если в сплаве увеличить количество углерода, то изделие не будет поддаваться резкой ломкости, а ударная вязкость снизится.
Кроме того, есть и другие процессы, которые может вызвать увеличение состава углерода:
- — повысится электросопротивление;
- — увеличивается коэрцитивная сила;
- — проницаемость магнитов будет снижена;
- — индукция магнитов станет не такой плотной.
Кроме того, нужно помнить и о том, что углерод может повлиять и на технологические процессы. Кроме всех положительных моментов, описанных выше, литейные свойства стали будут значительно ухудшены как только в составе повысится содержание углерода. Более того, свариваемость будет значительно хуже и резать и обрабатывать давлением такие стали будет значительно труднее. Но, это не значит, что если в стали не будет содержаться углерод, то с ней не будет возникать никаких проблем. Стали, в которых будет маленькое содержание углерода, также будут плохо резаться.
Но, кроме углерода в стали могут содержаться и другие примеси, о которых также нужно обязательно помнить. Делятся такие примеси на три постоянные группы:
1. Стандартные. Сюда относятся кремний, сера, фосфор, марганец. При этом первый и последний считаются примесями технологического типа. Эти примеси вводят в самом процессе выплавки стали, чтобы она раскислилась.
2. Скрытые. Сюда относятся газы такие, как кислород, водород, азот. Они будут попадать в сталь непосредственно уже при выплавке. Благодаря им будет снижено сопротивление хрупкому разрушению.
Новые свойства и преимущества сплава
Углерод в составе стали дает ей дополнительные преимущества, прежде всего это:
- достаточная твердость поверхностного слоя и относительная мягкость внутреннего слоя;
- хорошая обрабатываемость;
- долговечность;
- доступная цена.
С увеличением доли углерода возрастает твердость, прочность и уменьшается пластичность, следовательно, чем его больше, тем труднее процесс обработки резанием, хуже показатели деформации и сваривания. Исходя из этого выделяют следующие виды стали:
- Низкоуглеродистые, с долей менее 0,25%. Они достаточно пластичны, легко поддаются деформации и обработке.
- Среднеуглеродистые, с долей 0,3-0,6%. Этот вид также пластичен, имеет средний показатель прочности.
- Высокоуглеродистые, с долей 0,6-2%. С низкой вязкостью и высоким показателем прочности. Сварка производится только с предварительным разогревом до 225 градусов.
Помимо основных механических свойств, увеличение содержания углерода дает повышение порога хладноломкости.
Другие классификационные признаки
По способу раскисления
Различают три вида сталей: кипящие, полуспокойные, спокойные. При равном содержании углерода эти сплавы имеют одинаковые характеристики прочности и разные – пластичности.
- Для раскисления кипящих сталей (кп) применяют марганец. Для них характерны: значительная химическая и структурная неоднородность слитка. Благодаря малому содержанию кремния, стали поддаются холодной штамповке. Не применяются для создания изделий для эксплуатации в холодных климатических условиях.
- Полуспокойные (пс). Раскисляются марганцем, в ковше – алюминием.
- Спокойные (сп). Для раскисления применяются кремний, марганец, алюминий. Выход годного составляет примерно 85%. Для слитка характерна плотная однородная структура.
По качеству
- Углеродистые стали обыкновенного качества – их маркировка осуществляется по ГОСТу 380-2005. Они обозначаются индексом Ст и цифрой – номером марки. Чем больше номер, тем выше содержание углерода, больше твердость и меньше пластичность. В конце ставится обозначение способа раскисления: кп, пс, сп. Используются в изготовлении неответственных строительных конструкций, крепежных элементов, труб, листов, фланцев.
- Качественные углеродистые конструкционные стали обозначают двузначными числами, равными количеству углерода в сотых долях процента. В конце указывается индекс раскисления (кроме спокойных сталей).
Применение углеродистой стали
Сферы применения зависят от механических свойств, и, следовательно, от того, сколько углерода в стали. С показателем 0,7-1,3% углеродистую сталь используют для изготовления режущих и ударных инструментов. Маркируют их буквой «У», последующая цифра характеризует долю, например, У13. Чем выше показатель, тем больше влияние углерода на механические свойства стали.
Низкоуглеродистые стали разделяют на подгруппы в зависимости от назначения:
- Низкоуглеродистые: 05, 08, 10. Благодаря своей пластичности используются в холодной штамповке для изготовления шайб, прокладок, кожухов и иных деталей.
- Низкоуглеродистые: 15, 20, 25. Такое значение углерода в составе стали дает повышенную твердость и достаточный задел вязкости, применяются для изготовления деталей малого размера (кулачков, толкателей, малонагруженных шестерней).
- Среднеуглеродистые: 30, 35, 40, 45, 50, 55. Применяются для изготовления коленчатых валов малооборотных двигателей, зубчатых колес, маховиков – деталей, у которых работоспособность определяется сопротивлением усталости. Используют после нормализации и поверхностной закалки, которые повышают вязкость и пластичность, соответственно, улучшается показатель обрабатываемости.
- Высокоуглеродистые: 60, 65, 70, 75, 80, 85. Применяются для изготовления рессор, эксцентриков и пружин. Предварительно подвергаются закалке и среднему отпуску, что улучшает свойства упругости необходимые для изготавливаемых деталей.
- Котельные: 12К-22К. Используют для изготовления оборудования, эксплуатируемого при высоких температурах (сосуды и котлы для турбин и камер сгорания).
- Сталь автоматная. Нашла применение для изготовления крепежных изделий автомобилей в статических нагрузках (шпильки, гайки, болты).
Раскисление, дегазация и легирование стали
ЛЕГИРОВАНИЕ СТАЛИ
ВЛИЯНИЕ ЛЕГИРУЮЩИХ ПРИМЕСЕЙ НА СВОЙСТВА СТАЛИ
По химическому составу стали можно разделить на углеродистые и легированные. Сталь называют легированной, если в ней заданным составом обусловлено содержание элементов, отсутствующих в обычной углеродистой стали в значительных количествах, или имеется повышенное против допускаемого в углеродистой стали содержание кремния и марганца.
В состав обычной углеродистой стали входят следующие элементы: С, Si, Μn, Al, S, Ρ, О, Η и N. Содержание углерода обусловливает марку и свойства углеродистой стали. Кремний, марганец и алюминий вводят в эту сталь в незначительных количествах, главным образом для ее раскисления. Марганец и кремний обеспечивают также заданные механические свойства стали. Остальные перечисленные элементы попадают в готовую сталь из шихтовых материалов или печных газов и являются вредными примесями. Кроме указанных элементов, в углеродистой стали всегда содержатся незначительные количества хрома, никеля, меди и молибдена, вносимых шихтой. В углеродистой стали, выплавленной на машиностроительных заводах или заводах, производящих в большом количестве легированные стали, содержание этих элементов выше.
Наиболее распространенными легирующими элементами являются: Сr, Mn, Ni, Si, W, Mo, V, Ti, Cu, Co, Al, B, Nb, Zr, N, As, S, P.
В современной практике особенно часто сталь легируют первыми восемью элементами.
Ниже кратко излагается влияние различных элементов на свойства стали.
Углерод содержится в стали всех марок в количестве от 0,02 до 1,5%. С увеличением содержания углерода повышаются твердость и прочность и понижается пластичность стали. Увеличение количества углерода на каждую 0,1% в пределах до 0,85% повышает предел текучести на 2,8 кг/мм2, предел прочности— на 6,5 кг/мм2, снижает удлинение на 4,3% и сжатие поперечного сечения — на 7,3%. При увеличении содержания углерода более 0,85% его влияние на механические свойства стали проявляются в меньшей степени. Углерод увеличивает режущую способность -стали, повышает электросопротивление, коэрцитивную силу, несколько уменьшает плотность стали; снижает температуру плавления стали примерно на 90° С на каждый процент углерода. В условиях сталеплавильного процесса он является раскислителем и определяет содержание кислорода, растворенного в жидкой стали. В твердой стали углерод образует с железом различные структурные составляющие, что определяет свойства стали и является основой для ее последующей термической обработки.
Марганец содержится во всех сортах стали и является раскислителем или легирующим элементом. Марганец в виде ферромарганца широко используют в сталеплавильных процессах. Он облегчает горячую обработку стали давлением, образуя тугоплавкие соединения с серой и кислородом. Остаточное количество марганца (0,25—1,0%), растворяясь в феррите и частично образуя карбид, положительно влияет на механические свойства стали. В этих пределах марганец улучшает прокаливаемость стали, повышает предел текучести металла и почти не влияет на удлинение. В конструкционные легированные стали вводят до 1,8% Μη. Марганец является аустенитообразующим элементом. Высокоуглеродистая сталь с 13% Μη имеет в закаленном состоянии аустенитную структуру и хорошо сопротивляется истиранию при ударной нагрузке. В комплексе с вольфрамом и молибденом марганец служит заменителем никеля в конструкционных сталях, а с азотом—в нержавеющих сталях.
Кремний, являющийся более сильным раскислителем, чем марганец, вводят в сталь для раскисления в небольших количествах (0,2—0,4%). При содержании более 0,8% кремний является легирующим элементом. В количестве около 1% кремний повышает предел прочности и предел текучести стали, не снижая вязкости металла, поэтому углеродистую сталь с указанным содержанием кремния применяют для изготовления рессор и пружин. Кремнемарганцовистые стали, содержащие кремний и марганец в пределах 1 —1,3%, имеют хорошие пластические и прочностные свойства и служат заменителями хромоникелевой стали. Кремний повышает магнитную проницаемость и электросопротивление, понижает потери на гистерезис, поэтому электротехнические стали содержат кремний (1,5—2% в динамной стали, до 4%—в трансформаторной). Кремний, являясь феррито-образующим элементом, повышает кислотостойкость металла. Сплав, содержащий до 14% кремния (термосилид), применяют для кислотоупорного литья.
Алюминий—энергичный раскислитель. Для раскисления и регулирования размера первичного зерна аустенита в сталь обычно вводят не более 0,2% А1. Алюминий предотвращает старение стали и повышает ее пластические свойства. В хромомо-либденовые и хромистые стали, предназначенные для азотирования, вводят 0,7—1,2% А1.
Сера в обычных сортах стали содержится в количестве 0,01 — 0,05% и почти полностью находится в виде неметаллических включений. Она вызывает красноломкость стали, снижает механические свойства, увеличивает склонность стали к ржавлению и истиранию, уменьшает способность стали к глубокой вытяжке (штамповке). При более высоком содержании сера облегчает обрабатываемость стали на станках, поэтому в специальные сорта стали (автоматную) вводят 0,1—-0,3% S.
Фосфор в стали обычно присутствует в количестве 0,02— 0,1%· Он Вызывает хладноломкость стали. В средне- и высокоуглеродистых сталях это проявляется при меньших содержаниях фосфора, чем в низкоуглеродистых. В сталях, работающих только при повышенных температурах, допускается более высокое содержание фосфора. В гаечную и болтовую сталь для улучшения обрабатываемости вводят около 0,1% Р. Фосфор повышает коррозионную стойкость стали и препятствует слипанию тонких листов при прокатке листового железа.
Хром является одним из наиболее распространенных легирующих элементов, его используют как самостоятельно, так и в комплексе с другими элементами. Содержание хрома в легированной стали колеблется от 0,5 до 30%. Хром является феррито-образующим элементом; его присадка ведет к расширению температурного интервала затвердевания металла. При содержании 1.5% хром увеличивает твердость и прочность стали, не снижая ее пластичности. Для улучшения механических свойств стали вводят около 1% Сг. Хром повышает прочность стали при высоких температурах и увеличивает сопротивление окислению. Сталь, содержащая около 5% Сг, является теплостойкой. В кислотоупорной стали содержание хрома составляет 17—20%, в жаропрочных — 23—28%. Хром увеличивает прокаливаемость стали и несколько уменьшает склонность <�к перегреву, увеличивает сопротивление стали истиранию; в количестве 0,15—0,3% предотвращает слипание тонких листов кипящей стали при прокатке пакетами.
Никель применяют для легирования стали в концентрации от 1 до 25%. Он повышает прочность, особенно ударную вязкость стали и сопротивление окислению, увеличивает прокаливаемость, мало влияет на прочность стали при высоких температурах. Никель является аустенитообразующим элементом. В кислотоупорную сталь вводят 8—12% Ni, в окалиностойкую — 18—20%; служит стабилизатором аустенитного состояния при высоких и при низких температурах. В больших количествах никель применяют для производства сплавов (нихромов), предназначенных для изготовления нагревательных элементов. Никель— дорогой и дефицитный металл, поэтому постоянно ведут работы по созданию сталей и сплавов, в которых никель был бы заменен другими элементами.
Молибден для легирования стали вводят в количестве от 0,2 до 5%. Молибден до 0,6% повышает прочность и твердость стали, улучшает пластические свойства. Молибден сильно увеличивает прокаливаемость стали и обладает свойством ликвидировать отпускную хрупкость. В конструкционной стали содержится 0,2—0,4% Мо. Молибден повышает прочность стали при высоких температурах и поэтому его вводят в теплостойкие (0,4—0,6%) и жаропрочные (2—5%) стали. Некоторые жаропрочные сплавы содержат более 5% Мо. Молибден — очень дорогой и дефицитный металл, поэтому проводят большое число исследований с целью замены молибдена в стали другими элементами.
Вольфрам применяют в сталях, работающих при высоких температурах и больших ударных нагрузках. В быстрорежущую инструментальную сталь вводят 8,5 и 18% W, в штамповые и инструментальные— 1—8%, в жароупорные — 2—3%. Вольфрам— карбидообразующий элемент, поэтому сталь, содержащая вольфрам, обладает большой прочностью и твердостью. Стоимость вольфрама очень высока, поэтому его применяют только для некоторых сталей.
Ванадий—карбидообразующий элемент, сильно измельчает зерно аустенита, повышает прочность и увеличивает вязкость металла. Сталь, содержащая ванадий, хорошо сопротивляется ударным нагрузкам. Конструкционная сталь содержит 0,15— 0,4% V, а быстрорежущая инструментальная — 1—2% V. Ванадий— дефицитный металл. При переработке железных руд, содержащих ванадий, он окисляется и переходит в шлак, который специально перерабатывают с целью извлечения ванадия.
Титан образует прочные карбиды и нитриды, сильно измельчает зерно аустенита. 0,4—0,7% Ti вводят в кислотоупорную сталь для связывания углерода в прочные .карбиды, в результате чего уменьшается склонность этой стали к межкристаллической коррозии. Конструкционные стали содержат 0,1—0,15% Ti. Титан вводят в сталь, предназначенную для электросварки, с целью уменьшения самозакаливаемости. В ферритной высокохромистой стали титан измельчает зерно и препятствует образованию аустенита.
Ниобий — сильно карбидообразующий элемент. Повышает прочность и твердость низколегированной стали, а также заметно увеличивает сопротивление стали окислению при высокой температуре. Присаживается в нержавеющую сталь для устранения склонности к межкристаллитной коррозии, а в углеродистую (0,1%) и марганцовистую конструкционную (0,25%) — для ликвидации отпускной хрупкости.
Медь повышает прочность феррита. В количестве до 0,5% увеличивает пластичность стали в холодном состоянии, в количестве 0,2% —сопротивляемость углеродистой стали атмосферной коррозии. 3—4% Си вводят в хромоникелевую нержавеющую сталь для повышения ее коррозионной стойкости, 0,2% Си вводят в сталь, предназначенную для изготовления корпусов кораблей, так как медь препятствует прилипанию водорослей и ‘ракушек на подводную часть судна; кроме того, медь повышает предел текучести этих сталей. При содержании меди выше 0,3% в стали образуются участки эвтектического сплава, богатого медью и обладающего низкой температурой плавления. Этот сплав отлагается по границам зерен и вызывает красноломкость, металла при ковке и прокатке.
Бор в количестве 0,002—0,004% вводят в конструкционную сталь, предназначенную для термической обработки, с целью увеличения прокаливаемости. Влияние 0,002% В на увеличение прокаливаемости эквивалентно влиянию 0,2% Мо или 1% Ni, поэтому бор вводят вместо дефицитных элементов в высокопрочные, конструкционные стали. Количество марок стали, содержащей бор, с каждым годом возрастает.
Кобальт — дорогой металл. Быстрорежущая сталь, содержащая кобальт, остается очень твердой при высокой температуре (режущая кромка сохраняет свои свойства даже при температуре красного каления). Магнитотвердые сплавы (алнико) содержат до 24% Со. Кобальт повышает стойкость стали против окисления при высокой температуре, поэтому входит в состав сталей, ‘из которых изготовляют лопатки турбин, выхлопные клапаны двигателей внутреннего сгорания и др. Содержание кобальта в изготовляемых сплавах доходит до 55%.
Цирконий вводят в углеродистые и конструкционные стали в. количестве 0,1—0,25%. Цирконий аналогично алюминию измельчает зерно стали, повышает температурный порог начала роста зерна и прокаливаемость стали. Увеличивает предел выносливости стали на воздухе и в коррозионной среде и прочностные характеристики, ударную вязкость при температурах ниже нуля и улучшает свариваемость стали. Цирконий повышает теплоустойчивость стали в пределах температур до 500° С. Комплексное легирование цирконием и другими элементами (ванадием, титаном) сказывается на свойствах стали сильнее, чем легирование одним цирконием. Вследствие высокой стоимости и большого угара (~50%) цирконий не нашел широкого распространения в металлургии, хотя в настоящее время разработано несколько марок стали, рекомендованных промышленности.
Кальций в количестве 0,2—0,5% вводят в углеродистые и конструкционные стали для раскисления. В высоколегированных сталях кальций выполняет роль модификатора. Вводится в сталь обычно в виде силикокальция, реже — в виде металлического кальция. В присутствии алюминия или редкоземельных металлов кальций способствует образованию глобулярных неметаллических включений.
Свинец (до 0,25%) вводят в некоторые стали для облегчения обработки резанием. На механические свойства стали влияет очень мало. Свинец совершенно не растворяется в жидкой стали, образует эмульсию; часть его при взаимодействии со сталью испаряется. Присаживают свинец в изложницы. Пары окислов свинца ядовиты, поэтому необходимо принимать меры к их улавливанию.
Цинк применяют как покрытие тонколистовой стали и труб для защиты от ржавления. В жидкую сталь его вводить нельзя, так как он испаряется при температурах сталеварения.
Олово не применяют в качестве легирующего элемента, а используют как покрытие очень тонкой (белой) жести. В сталь олово попадает из шихты. Олово в количестве 0,06% вызывает хрупкость стали при температурах ковки и прокатки (красноломкость), в количестве до 0,1% не влияет на механические свойства стали, однако в стали, предназначенной для глубокой вытяжки, содержание олова не должно превышать 0,02—0,03%.
Мышьяк попадает в сталь из железных руд. Особенно много мышьяка содержится в стали, выплавляемой из чугуна, полученного из руд Керченского месторождения. Мышьяк в стали не является вредной примесью, и его действие похоже на действие меди. При содержании до 0,1% мышьяк повышает предел прочности и предел упругости стали (на каждую 0,01 % увеличения содержания мышьяка 0,4 кг/мм2). При этом пластичность и ударная вязкость снижаются незначительно. До 0,25% мышьяк не изменяет свариваемость стали. Мышьяк при затвердевании ликвирует подобно сере и фосфору. Присадка мышьяка несколько повышает сопротивляемость стали атмосферной коррозии.
Редкоземельные металлы (церий, лантан и др.), введенные в сталь в виде мишметалла или ферроцерия , заметно влияют на механические и технологические свойства сталей. Церий и лантан применяют в качестве модификаторов различных сталей; одновременно они являются десульфураторами и дегазаторами стали. Количество мишметалла или ферроцерия, вводимых в ковш, колеблется в ‘пределах 1—3 кг на тонну жидкой стали. При введении такого количества редкоземельных металлов в слитках л отливках углеродистой, конструкционной и высоколегированной сталей исчезает дендритная структура. Жидкотеку-честь стали при этом повышается, что способствует быстрому удалению сульфидов церия и лантана, образующихся при взаимодействии с жидким металлом. Наиболее полная десульфура-ция кислой стали (примерно на 50%) достигается при введении церия (0,2—0,3%) и силикокальция (0,2—0,3%) непосредственно в струю металла во время выпуска в ковш. Присутствие редпоземельных металлов в стали улучшает ее свариваемость и деформируемость в горячем состоянии. Присадка в сталь Х23Н18 0,1—0,2% ферроцерия способствует измельчению литой структуры металла и улучшению ковкости и прокатываемость слитков. Введение 0,05—0,1% мишметалла в сталь 40Н ослабляет внеосевую зональную неоднородность слитков и отливок, присадка 0,15—0,2% сплава практически предотвращает образование усов в слитках. Церий способствует повышению свойств литой стали до уровня кованой. Чем больше загрязнений в жидкой стали, тем эффективнее влияние обработки ее церием. Чем более легирована сталь, тем меньше оптимальная величина добавок: церия. Для ответственных отливок из углеродистой стали эта величина составляет 0,2—0,3%, для стали, легированной никелем, хромом, кремнием,—0,1—0,15%.
Другие элементы периодической системы в виде примесей также могут присутствовать в стали, однако их содержание настолько ничтожно, что они не оказывают какого-либо заметного влияния на свойства металла. Интересно отметить, что даже в состав технически чистого железа входит около двадцати различных элементов, хотя их общее содержание не превышает 0,25%.
Влияние других примесей
Как и углерод, иные химические элементы в составе стали влияют на ее механические свойства:
- кремний – используется как активный раскислитель;
- марганец – снижает влияние кислорода и серы, уменьшает стойкость к нагрузкам;
- сера и фосфор – увеличивают показатель красноломкости, относятся к категории вредных примесей;
- титан – улучшает показатели прочности и пластичности;
- хром – повышает жаростойкость и стойкость к стиранию;
- никель – улучшает вязкость и упругость;
- медь – оказывает влияние на стойкость к коррозии.
Механические свойства стали полностью зависят от ее состава и наличия тех или иных примесей. Именно эти характеристики необходимо учитывать при применении стали в промышленном производстве. Некоторое негативное влияние содержания элементов можно снизить дополнительными методами улучшения – термическим упрочением поверхности (цементация) или добавлением антикоррозийной защиты, проще говоря – гальваника, покрытие которой увеличивает срок службы изделия.
Классификация сталей
Стали классифицируют по назначению для дальнейшего использования, химическому составу, качеству, структуре.
По назначению стали принято делить на конструкционные, коррозионно стойкие (нержавеющие), инструментальные, жаропрочные, криогенные.
- Легированная — сталь содержащая специально вводимые, в определённых количествах, элементы, которые обеспечивают требуемые физические или механические свойства. Эти элементы называются легирующими. Как правило, легирование повышает прочность, коррозийную стойкость стали, понижают хрупкость. Легированную сталь по степени легирования разделяют на: низколегированную (легирующих элементов до 2,5 %); среднелегированную (от 2,5 до 10 %); высоколегированную (от 10 до 50 %).
- Конструкционная — сталь применяемая при изготовлении различных деталей, механизмов и конструкций в машиностроении и строительстве, обладающая определёнными механическими, физическими и химическими свойствами.
- Нержавеющая — легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.
- Инструментальная углеродистая — сталь с содержанием углерода от 0,7 % и выше. Она отличается высокой твёрдостью и прочностью и применяется для изготовления инструмента.
- Жаропрочная — это вид стали, который подлежит эксплуатации при высоких температурах (от 30% от температуры плавления).