Использование алюминия: сферы применения чистого металла и его сплавов


30.04.2021 Автор: VT-METALL

Вопросы, рассмотренные в материале:

  • Как был открыт алюминий и каковы его основные свойства
  • Основные физические свойства алюминия
  • Основные химические свойства алюминия
  • Как применяют основные свойства алюминия
  • Как используют основные свойства алюминия в строительстве

Основные свойства алюминия делают этот материал по-настоящему универсальным и ценным. Его используют во всех видах промышленного производства, в сельском хозяйстве, в быту, в коммерции. Обладает огромным количеством преимуществ по отношению к стали и другим видам металла.

Самые популярные сферы применения алюминия – изготовление металлоконструкций и металлообработка. О том, какие свойства металла и где конкретно они нашли свое применение, читайте далее.

Авиация

На современном этапе развития дозвуковой и сверхзвуковой авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении.

В авиации США широко применяются сплавы серии 2ххх, Зххх, 5ххх, 6ххх и 7ххх. Серия 2ххх рекомендована для работы при высоких рабочих температурах и с повышенными значениями коэффициента вязкости разрушения. Сплавы серии 7ххх — для работы при более низких температурах значительно нагруженных деталей и для деталей с высокой сопротивляемостью к коррозии под напряжением. Для малонагруженных узлов применяются сплавы серии Зххх, 5ххх и 6xxx. Они же используются в гидро-, масло-и топливных системах.

В России при изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего сплавного набора элементов планера самолета (фюзеляж, крыло, киль и др.). Сплав 1420, принадлежащий системе Al-Zn-Mg, используют при конструировании сварного фюзеляжа пассажирского самолета. При изготовлении гидросамолетов предусмотрено применение свариваемых коррозионностойких магнолиевых сплавов (AМг5, АМг6) и сплавов Al-Zn-Mg (1915, В92, 1420).

Рисунок 1 – Гражданский самолет

Бесспорное преимущество имеется у свариваемых алюминиевых сплавов при создании объектов космической техники. Высокие значения удельной прочности, удельной жесткости материала позволили обеспечить изготовление баков, межбаковых и носовых частей ракеты с высокой про-дольной устойчивостью. К достоинствам алюминиевых сплавов (2219 и др.) следует отнести их работоспособность при криогенных температурах в контакте с жидким кислородом, водородом и гелием. У этих сплавов происходит так называемое криогенное упрочнение, т.е. прочность и пластичность параллельно растут с понижением температуры.

Сплав 1460 принадлежит системе Al-Cu-Li и является более перспективным для проектирования и изготовления баковых конструкций применительно к криогенному типу топлива – сжатому кислороду, водороду или природному газу.

Кристаллическая решётка алюминия:

500Кристаллическая решётка
511Кристаллическая решётка #1
512Структура решёткиКубическая гранецентрированная
513Параметры решётки4,050 Å
514Отношение c/a
515Температура Дебая394 К
516Название пространственной группы симметрииFm_ 3m
517Номер пространственной группы симметрии225

Судостроение

Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Основное преимущество при внедрении алюминия и его сплавов по сравнению со сталью – снижение массы судов, которая может достигать 50 – 60 %. В результате представляется возможность повысить грузоподъемность судна или улучшить его тактико-технические характеристики (маневренность, скорость и т.д.).

Наиболее широкое применение среди алюминиевых сплавов для изготовления конструкций речного и морского флота находят магналиевые сплавы АМгЗ, АМг5, АМг61, а также сплавы АМц и Д16. Корпус судна повышенной грузоподъемности изготовляют из стали, тогда как надстройки и другое вспомогательное оборудование из алюминиевых сплавов. Имеет место изготовление рыболовецких баркасов из сплава АМг5 (обшивка).

Широкое применение в судостроении США находят свариваемые сплавы серии 5ххх и 6ххх. Там, где необходима высокая прочность (500 МПа), используются полуфабрикаты из сплавов серии 2xxx и 7ххх.

Железнодорожный транспорт

Тяжелые условия эксплуатации подвижного состава железной дороги (длительный срок службы и способность выдерживать ударные нагрузки) выдвигают особые требования к конструкционным материалам.

Рисунок 2 – Товарный поезд

Основные характеристики алюминия и его сплавов, раскрывающие целесообразность применения их в железнодорожном транспорте, высокая удельная прочность, небольшая сила инерции, коррозионная стойкость. Внедрение алюминиевых сплавов при изготовлении сварных емкостей повышает их долговечность при перевозке ряда продуктов химической и нефтехимической промышленности.

Алюминий и его сплавы используются при изготовлении кузова и рамы вагона. Для вагона рекомендованы свариваемые сплавы средней прочности марок АМг3, AMr5, Амг6 и 1915. Перспективными сплавами для рефрижераторных вагонов являются алюминиевые сплавы. В зависимости от продуктов химической промышленности выбирается марка свариваемого материала для котлов цистерны.

В США из свариваемых сплавов серии 6ххх, серии 5ххх и сплава 7005 изготавливают подвижной состав с получением оптимальных прочностных характеристик и высокой коррозионной стойкости сварных элементов.

Токсичность

Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела): ацетат алюминия — 0,2-0,4; гидроксид алюминия — 3,7-7,3; алюминиевые квасцы — 2,9. В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Норматив содержания алюминия в воде хозяйственно-питьевого использования сотавляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.

Источники

  • https://www.RusCable.ru/info/general/aluminium/
  • https://chemege.ru/aluminium/
  • https://TheMineral.ru/metally/alyuminij
  • https://chem.ru/aljuminij.html
  • https://himsnab-spb.ru/article/ps/al/

Автомобильный транспорт

Одним из основных требований к материалам, применяемым в автомобильном транспорте, является малая масса и достаточно высокие показатели прочности. Принимаются во внимание также коррозионная стойкость и хорошая декоративная поверхность материала.

Рисунок 3 – Автомобиль

Высокая удельная прочность алюминиевых сплавов увеличивает грузоподъемность и уменьшает эксплуатационные расходы передвижного транспорта. Высокая коррозионная стойкость материала продляет сроки эксплуатации, расширяет ассортимент перевозимых товаров, включая жидкости и газы с высокой агрессивной концентрацией.

При изготовлении элементов каркаса, обшивки кузова полуприцепа автофургона, рефрижератора, скотовоза и т.п. перспективным материалом являются алюминиевые сплавы АД31, 1915 (прессованные профили) и сплавы АМг2, АМг5 (лист).

Находят применение алюминиевые сплавы АМц, АМгЗ и 1915 при изготовлении отдельных узлов легкового автомобиля (навесные детали, бамперы, радиаторы охлаждения, отопители).

В автомобилестроении США широко используются алюминиевые свариваемые сплавы серии Зххх, 5ххх и 6ххх.

Из прессованных полуфабрикатов сплавов 2014 и 6061 изготовляют балки, рамы тяжелых грузовых автомобилей. Панели и отдельные элементы из сплава 5052 поступают на изготовление кабины. В качестве обшивочного материала кузова грузовика используют лист из сплавов 5052, 6061, 2024, 3003 и 5154. Стойки кузова выполняются из прессованных полуфабрикатов сплавов 6061 и 6063. Магналиевые сплавы серии 5ххх (5052, 5086, 5154 и 5454) являются основным материалом при изготовлении автоцистерн.

Строительство

Перспективность применения алюминиевых сплавов в строительных конструкциях подтверждается технико-экономическими расчетами и многолетней мировой практикой в области сооружения различных строительных объектов.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.). В зависимости от назначения строительных алюминиевых конструкций рекомендуются различные марки сплавов: АД1, АМц, АМг2, АД31, 1915 и др.

Рисунок 4 – Здание со светопрозрачными конструкциями из алюминия

Опыт, накопленный в США, подтверждает целесообразность использования алюминиевых сплавов в строительных конструкциях. На них расходуется больше алюминия, чем в любой другой отрасли промышленности. При этом предпочтение отдается внедрению свариваемых сплавов серии Зххх, 5ххх и 6ххх.

Соединения металла

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Нефтяная и химическая промышленность

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Рисунок 5 – Нефтяная вышка

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионностойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от – 196 до +150 °С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости – 1100 или 3003; сосуды высокого давления – из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов – из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062 [3].

Электрика

Алюминий и ряд сплавов на его основе находят применение в электротехнике, благодаря хорошей электропроводности, коррозионной стойкости, небольшому удельному весу, и, что немаловажно, меньшей стоимостью, по сравнению с медью и ее проводниковыми сплавами.

В зависимости от величины удельного электросопротивления, алюминиевые сплавы подразделяют на проводниковые и сплавы с повышенным электрическим сопротивлением.

Удельная электрическая проводимость электротехнического алюминия марок А7Е и А5Е составляет порядка 60 % от проводимости отожженной меди по международному стандарту. Технический алюминий АД0 и электротехнический А5Е используют для изготовления проводов, кабелей и шин. Применение в электротехнической промышленности получили низколегированные сплавы алюминия системы Al-Mg-Si АД31, АД31Е.

Сплавы алюминия, повышающие его прочность и улучшающие другие свойства, получают введением в него легирующих добавок, таких, как медь, кремний, магний, цинк, марганец.

Дуралюмин

Дуралюмин (дюраль, дюралюминий, от названия немецкого города, где было начато промышленное производство сплава) – сплав алюминия (основа) с медью (Cu: 2,2 – 5,2%), магнием (Mg: 0,2 – 2,7 %) марганцем(Mn: 0,2 – 1 %). Подвергается закалке и старению, часто плакируется алюминием. Является конструкционным материалом длZ авиационного и транспортного машиностроения.

Рисунок 6 – Дюралюминий листовой

Силумин

Силумин – легкие литейные сплавы алюминия (основа) с кремнием (Si: 4 – 13 %), иногда до 23 % и некоторыми другими элементами: Cu, Mn, Mg, Zn, Ti, Be). Из него изготавливают детали сложной конфигурации, главным образом в авто- и авиастроении.

Рисунок 7 – СилуминРисунок 8 – Магналии

Магналии

Магналии – сплавы алюминия (основа) с магнием (Mg: 1 – 13 %) и другими элементами, обладающие высокой коррозийной стойкостью, хорошей свариаемостью, высокой пластичностью. Из них изготавливают фасонные отливки (литейные магналии), листы, проволоку, заклепки и т. д. (деформируемые магналии).

По широте применения сплавы алюминия занимают второе место после стали и чугуна [4].

Свойства атома алюминия:

200Свойства атома
201Атомная масса (молярная масса)26,9815386(8) а.е.м. (г/моль)
202Электронная конфигурация1s2 2s2 2p6 3s2 3p1
203Электронная оболочкаK2 L8 M3 N0 O0 P0 Q0 R0
204Радиус атома (вычисленный)118 пм
205Эмпирический радиус атома*125 пм
206Ковалентный радиус*121 пм
207Радиус иона (кристаллический)Al3+
53 (4) пм,

67,5 (6) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208Радиус Ван-дер-Ваальса184 пм
209Электроны, Протоны, Нейтроны13 электронов, 13 протонов, 14 нейтронов
210Семейство (блок)элемент p-семейства
211Период в периодической таблице3
212Группа в периодической таблице13-ая группа (по старой классификации – главная подгруппа 3-ей группы)
213Эмиссионный спектр излучения

Применение в быту

Исследуя влияние алюминия на различные пищевые продукты, ученые установили, что при контакте пищи с алюминием не разрушаются витамины. Это открытие послужило причиной широкого применения алюминия в пищевой промышленности, в виде посуды из алюминия, а также в косметике и бытовой химии. Из алюминия изготавливают разнообразную аппаратуру, предназначенную для переработки пищевых продуктов в сахарной, кондитерской, маслобойной и других отраслях промышленности.

Рисунок 9 – Алюминивая посуда

Алюминиевых изделий изобилие, как на кухне крупного предприятия общественного питания, так и на домашней кухне: мясорубки, вилки, ложки, чашки, тазы, посуда из алюминия и т. д. Алюминиевая фольга — прекрасный упаковочный материал, хорошо сохраняющий различные продукты. В обертку из алюминиевой фольги упаковываются кулинарный жир, маргарин, мороженое, конфеты и многое другое, поэтому его еще именуют — пищевой алюминий. В алюминиевые тубы традиционно упаковывается зубная паста. Чтобы было удобно пользоваться, некоторые продукты, такие, например, как плавленый сыр, упаковывают в тубы с отвинчивающейся крышкой. В таких тубах берут с собой в космос продукты питания космонавты. Все чаще тонкий листовой пищевой алюминий применяется вместо жести при производстве консервных банок, а также все больше посуды из алюминия изготавливают производители [5].

Уменьшение температуры

Перед тем как приступать к плавке металла, можно выполнить определенные операции, которые позволят снизить температуру плавления. Например, иногда расплаву подвергают алюминиевый порошок. В порошкообразном состоянии металл начинает плавиться несколько быстрее. Но при такой обработке возникает реальная опасность того, что при взаимодействии с кислородом, который содержится в атмосфере алюминиевый порошок, начнет окисляться с большим выделением тепла и образования оксидов металла, этот процесс происходит при температуре 2300 градусов. Главное, в этот момент плавления не допустить контакта расплава и воды. Это приведет к взрыву.

Фармацевтика

Говоря об универсальности алюминия, нельзя обойти вниманием важный факт: металл, из которого делают посуду и самолеты, широко применяется для лечения и предупреждения тяжелых болезней и одобрен для этих целей Всемирной организацией здравоохранения. Конечно, речь идет не об алюминии в чистом виде, а о его соединениях.

В 1926 году было открыто, что осажденный квасцами дифтерийный токсоид (обезвреженный бактериальный токсин) гораздо лучше стимулирует выработку антител, чем он же в чистом виде. С тех пор для усиления действия вакцин чаще всего используют алюминиевые соли, поскольку они считаются безвредными для человека.

Именно на основе алюминия производят наиболее эффективные антациды. Гидроокись алюминия, хорошо нейтрализующая кислоту, нужна для лечения язвенных болезней, диспепсии, раздражения желудка. Для этих же целей подходит фосфат алюминия.

Рисунок 10 — ЛекарстваРисунок 11 — Дезодоранты

Но даже тем, у кого прекрасное здоровье, пригодится содержащее алюминий средство, которое продается в любое аптеке, да и не только. Речь идет о дезодоранте-антиперспиранте. Еще древние греки и римляне использовали квасцы для подавления секреции. Обычными квасцами пользовались и наши бабушки. В первые фабричные средства от запаха пота добавляли хлорид алюминия, а основным агентом современных средств является хлоргидрат алюминия. Кстати, на чем основан эффект их действия, до сих пор точно не известно [6].

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]