Основные свойства металлов
К
атегория:
Металлы
Основные свойства металлов
Далее: Испытания на растяжение
Свойства металлов делятся на физические, химические, механические и технологические.
К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.
К химическим — окнсляемость, растворимость и коррозионная стойкость.
К механическим — прочность, твердость, упругость, вязкость, пластичность.
К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.
Дадим краткие определения механическим свойствам.
Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.
Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела.
Упругость — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).
Вязкостью называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.
Пластичностью называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.
Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить доброкачественность готовых изделий.
Механические испытания имеют важнейшее значение в промышленности.
Детали машин, механизмов и сооружений работают под нагрузками. Нагрузки на детали бывают различных видов: одни детали нагружены постоянно действующей в одном направлении силой, другие подвержены ударам, у третьих силы более или менее часто изменяются по своей величине и направлению. Некоторые детали машин подвергаются нагрузкам при повышенных температурах, при действии коррозии и т. п.; такие детали работают ,3 сложных условиях.
В соответствии с этим разработаны различные методы испытаний металлов, с помощью которых определяют механические свойства.
Наиболее распространенными испытаниями являются статическое растяжение, динамические испытания и испытания на твердость.
Статическими называются такие испытания, при которых испытуемый металл подвергают воздействию постоянной силы или силы, возрастающей весьма медленно.
Динамическими называют такие испытания, при которых испытуемый металл подвергают воздействию удара или силы, возрастающей весьма быстро,
Кроме того, в ряде случаев, производятся испытания на усталость, ползучесть и износ, которые дают более полное представление о свойствах металлов.
Механические свойства. Первое требование, предъявляемое ко всякому изделию,—это достаточная прочность.
Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.
Многие изделия, кроме общей прочности, должны обладать еще особыми свойствами, характерными для работы данного изделия. Например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих и других инструментов применяются инструментальные стали и сплавы.
Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью.
Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке.
Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).
Физические свойства. В авиа-, авто- и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и магния являются здесь особенно полезными. Удельная прочность (отношение предела прочности к удельному весу) для некоторых, например алюминиевых сплавов выше, чем для мягкой стали.
Плавкость используется для получения отливок путем заливки расплавленного металла в формы. Легкоплавкие металлы (например, свинец) применяются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляются в горячей воде. Такие сплавы применяются для отливки типографских матриц, в приборах, служащих для предохранения от пожаров, и т. п.
Металлы с высокой электропроводностью используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением— для ламп накаливания электронагревательных приборов.
Магнитные свойства металлов играют первостепенную роль в электромашиностроении (динамомашины, электродвигатели, трансформаторы), в электроприборостроении (телефонные и телеграфные аппараты) и т. д.
Теплопроводность металлов дает возможность производить их равномерный нагрев для обработки давлением, термической обработки; она обеспечивает также возможность пайки металлов, их сварки и т. п.
Некоторые сплавы металлов имеют коэффициент линейного расширения близкий к нулю; такие сплавы применяются для изготовления точных приборов, радиоламп и пр. Расширение металлов должно приниматься во внимание при постройке длинных сооружений, например мостов. Нужно также учитывать, что две детали, изготовленные из металлов с различным коэффициентом расширения и скрепленные между собой, при нагревании могут дать изгиб и даже разрушение.
Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окисленных средах (колосниковые решетки, детали машин химической промышленности). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислотостойкие и жаропрочные стали, а также применяют защитные покрытия для изделий.
Технологические свойства. Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций.
—
Все материалы обладают рядом свойств, которые различаются как физические, механические, химические и технологические.
К физическим свойствам металлов относят удельный вес, температуру плавления, цвет,.электропроводность, теплопроводность, теплоемкость, расширяемость при нагревании, магнитные свойства и некоторые другие. В зависимости от условий работы или эксплуатации деталей некоторые из этих свойств приобретают решающее значение и служат основанием для выбора материала при изготовлении и использовании детали. Например, удельный вес и прочность — важные качества для материала в самолетостроении, где нужны легкие и прочные детали. Температура плавления имеет большое значение для деталей, работающих при высоких температурах, например нити накаливания в электрических лампах, футеровка плавильных печей и т. п. Поэтому детали самолета изготовляют из сплавов алюминия и магния, а для изготовления нитей накаливания употребляется вольфрам и т. д.
Из химических свойств металлов главным образом важна коррозионная стойкость, а также окисляемость и растворимость.
Очень важную роль в определении пригодности металла как материала для деталей машин и механизмов играют его механические свойства.
Механические свойства: прочность, твердость, упругость, пластичность, вязкость и хрупкость.
Прочность — способность материала сопротивляться воздействию сил, не разрушаясь и не изменяя допустимой формы.
Примером прочного материала служит сталь. Стальные изделия с трудом разрушаются и изменяют форму. В противоположность стали ртуть не обладает прочностью. При обычной температуре она находится в жидком состоянии и не сохраняет формы.
Твердость — способность материала противостоять проникновению в него другого, более твердого тела. Самым твердым из известных нам веществ является алмаз. Высокой твердостью обладают различные сорта стали и так называемые твердые сплавы. Твердость — главнейшее свойство материалов, из которых изготовляют режущие инструменты.
Упругость — способность тела восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших это изменение. Примером упругого тела может служить стальная пружина, которая после прекращения сил воздействия восстанавливает свою прежнюю форму.
Пластичность — способность материала изменять свою форму под воздействием сил не разрушаясь и не восстанавливать прежней формы после прекращения действия сил. Примером пластичного металла может служить свинец. Это качество по своей сущности противоположно упругости.
Вязкость — способность материала выдерживать механические воздействия (удары) не разрушаясь. Очень вязка, например, малоуглеродистая сталь, употребляемая для неответственных деталей.
Хрупкость — качество, противоположное вязкости, способность тела легко разрушаться при механических воздействиях (ударах). Примером хрупкого металла является чугун.
Технологические свойства металлов и сплавов представляют собой сочетание различных механических и физических свойств, проявляющихся в процессах изготовления деталей машин.
К технологическим свойствам металла относятся возможность обработки резанием, литьем, прокаткой, ковкой, волочением, способность свариваться и подвергаться термообработке.
Для определения свойств металлов и сплавов пользуются: а) механическими испытаниями, которыми устанавливают их прочность, твердость, упругость, пластичность, вязкость и хрупкость; б) физическими измерениями удельного веса, температуры плавления, тепла и электропроводности; в) химическим анализом, который определяет качественный и количественный состав сплава; г) металлографическим- анализом, позволяющим получить данные о структуре и свойствах металла с помощью микроскопа и рентгеновского аппарата; д) технологическими пробами, дающими возможность определить пригодность металла для данного вида обработки.
Физические, химические, механические и технологические свойства металлов
Чтобы правильно выбрать материал для определённых целей, необходимо знать свойства металлов. Так, например, для изготовления режущих инструментов требуются прочные, твердые и износоустойчивые металлические материалы.
Физические свойства металлов и сплавов определяются цветом, удельным весом, плотностью, температурой плавления, тепловым расширением, тепло- и электропроводностью, а также магнитными свойствами.
Физические свойства металлов характеризуются определенными числовыми значениями, которые приведены в таблице 1.
Таблица 1
Физические свойства некоторых металлов
Металл | Символ | Цвет | Плотность, кг/м3 | Температура плавления, °С | Удел. электро- сопротивление при 20 °С, 10-6 Ом∙м |
Алюминий | Al | Серебристо-белый | 2700 | 658,7 | 0,029 |
Вольфрам | W | Блестящий белый | 19300 | 3380 | 0,053 |
Железо | Fe | Серебристо-белый | 7800 | 1539 | 0,100 |
Кобальт | Co | Серебристо-белый | 8900 | 1490 | 0,062 |
Магний | Mg | Блестящий серебристо-белый | 1700 | 650 | 0,047 |
Медь | Cu | Красный | 8900 | 1083 | 0,017 |
Никель | Ni | Серебристо-белый с сероватым оттенком | 8900 | 1452 | 0,070 |
Олово | Sn | Серебристо-белый | 7300 | 231,9 | 0,124 |
Свинец | РЬ | Синевато-серый | 11400 | 327,4 | 0,220 |
Титан | Ti | Серебристо-белый | 4500 | 1668 | 0,470 |
Хром | Сr | Блестящий серовато-белый | 7100 | 1550 | 0,150 |
Цинк | Zn | Синевато-серый | 7100 | 419,5 | 0,060 |
Отношение массы тела к его объему является постоянной величиной для данного вещества и называется плотностью.
Плотность и удельный вес имеют большое значение при выборе металлических материалов для изготовления различных изделий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.
Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.
Температура плавления является важным физическим свойством металлов. Знание температуры плавления металлов и сплавов необходимо в металлургии, в литейном производстве, при горячей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических материалов.
Способность металлов передавать теплоту от более нагретых частей тела к менее нагретым называется теплопроводностью.
Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.
Теплопроводность металлов имеет большое практическое значение. Из металлов и сплавов, обладающих высокой теплопроводностью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.
Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быстрый нагрев и быстрое охлаждение таких металлических материалов может вызвать образование трещин. Это необходимо учитывать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.
Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении — сжимаются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расширения α, который показывает, на какую долю первоначальной длины l0 при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α — °С-1.
Тепловое расширение металлов необходимо учитывать при изготовлении и эксплуатации точных измерительных приборов и инструментов, изготовлении литейных форм, горячей обработке металлов давлением и в других случаях, связанных с нагреванием и охлаждением.
Детали точных приборов и измерительных инструментов изготавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из материалов с большим коэффициентом линейного расширения.
Электропроводностью называется способность металлов проводить электрический ток.
Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.
Магнитные свойства. Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают железо, никель, кобальт и их сплавы. Перечисленные выше металлические материалы называют ферромагнитными. У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.
Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.
Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.
При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа — 768°С, у никеля — 360° С, у кобальта — 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).
К химическим свойствам металлов следует отнести их способность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высоких температурах.
Рассмотренные выше физические свойства металлов обнаруживаются в явлениях, не сопровождающихся изменением вещества. Так, например, нагрев металлов или прохождение через металлы электрического тока не сопровождается химическими изменениями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.
Многие металлы подвергаются химическому изменению под воздействием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распространения коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.
Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным металлам.
Прочность — это способность материала сопротивляться действию внешних сил без разрушения.
Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.
Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохранять полученные деформации после прекращения действия внешних сил.
Механическими свойствами металлов называется совокупность свойств, характеризующих способность металлических материалов сопротивляться воздействию внешних усилий (нагрузок).
К механическим свойствам металлических материалов относятся: прочность, твердость, пластичность, упругость, вязкость, хрупкость, усталость, ползучесть и износостойкость.
Твердость — способность металла оказывать сопротивление проникновению в него другого, более твердого тела.
Прочность — способность металла сопротивляться разрушению под действием внешних сил.
Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).
Пластичность — способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.
Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.
Технологические свойства металлов и сплавов характеризуют их способность поддаваться различным методам горячей и холодной обработки. К технологическим свойствам металлов и сплавов относятся литейные свойства, ковкость, свариваемость, обрабатываемость режущими инструментами, прокаливаемость.
Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.
Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.
Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.
Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.
Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.
Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.
Красноломкасть — склонность металла к переходу в хрупкое состояние с повышением температуры.
При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.
Кристаллические и аморфные вещества
Гкл или гвл, что лучше: различия, в чем разница, что выбрать?
При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная соль – хрупкие, их легко разрушить. Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения
Маркировка меди
Какие марки меди использует человек для производства необходимых ему изделий? Их множество: М00, М0, М1, М2, М3. Вообще, марки меди идентифицируются чистотой её содержания.
Например, медь марок М1р, М2р и М3р содержит 0,04% фосфора и 0,01% кислорода, а марок М1, М2 и М3 — 0,05-0,08% кислорода. В марке М0б кислород отсутствует, а в МО его процентное содержание составляет 0,02%.
Итак, рассмотрим более подробно медь. Таблица, приведённая далее, предоставит более точную информацию:
Марка меди | М00 | М0 | М0б | М1 | М1р | М2 | М2р | М3 | М3р | М4 |
Процентное меди | 99,99 | 99,95 | 99,97 | 99,90 | 99,70 | 99,70 | 99,50 | 99,50 | 99,50 | 99,00 |
Где находят медь в природе?
Земная кора вмещает (4,7-5,5) х 10-3% меди (по массе). В речной и морской воде её намного меньше: 10-7% и 3 х 10-7% (по массе) соответственно.
В природе очень часто находят соединения меди. В промышленности используется халькопирит CuFeS2, именуемый медным колчеданом, борнит Cu5FeS4, халькозин Cu2S. Одновременно люди находят и иные минералы меди: куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2 и ковеллин CuS. Очень часто масса отдельных скоплений меди достигает 400 тонн. Медные сульфиды образуются в основном в гидротермальных среднетемпературных жилах. Нередко и в осадочных породах можно отыскать медные месторождения – сланцы и медистые песчаники. Наиболее известными месторождениями являются в Забайкальском крае Удокан, Жезказган в Казахстане, Мансфельд в Германии и медоносный пояс Центральной Африки. Другие богатейшие месторождения меди расположены в Чили (Кольяуси и Эскондида) и США (Моренси).
Большую часть медной руды добывают открытым способом. В ней содержится от 0,3 до 1,0% меди.
Влияние температуры на свойства
Влияние температуры неоднозначно. Малоуглеродистые и среднеуглеродистые стали, с повышением температуры, становятся более пластичными (1). Высоколегированные стали имеют большую пластичность в холодном состоянии (2). Для шарикоподшипниковых сталей пластичность практически не зависит от температуры (3) . Отдельные сплавы могут иметь интервал повышенной пластичности (4). Техническое железо в интервале 800…1000С характеризуется понижением пластических свойств (5). При температурах, близких к температуре плавления пластичность резко снижается из-за возможного перегрева и пережога.
История
Одним из первых металлов, которые люди начали активно использовать в своём хозяйстве, является медь. Действительно, она слишком доступна для получения из руды и имеет малую температуру плавления. С давних пор человеческому роду известна семёрка металлов, в которую также входит и медь. В природе данный элемент встречается намного чаще, чем серебро, золото или железо. Древние предметы из меди, шлак, являются свидетельством её выплавки из руд. Они обнаружены при раскопках посёлка Чатал-Хююк. Известно, что в медный век получили большое распространение медные вещи. Во всемирной истории он следует за каменным.
С. А. Семёнов с сотрудниками проводил экспериментальные исследования, в которых выяснил, что медные орудия труда по сравнению с каменными выигрывают по многим параметрам. У них выше скорость строгания, сверления, рубки и распилки древесины. А обработка кости медным ножом длится столько же, сколько и каменным. А ведь медь считается мягким металлом.
Очень часто в древности вместо меди использовали её сплав с оловом – бронзу. Она необходима была для изготовления оружия и иных вещей. Итак, на смену медному веку пришёл бронзовый. Бронзу впервые получили на Ближнем Востоке за 3000 лет до н. э.: людям нравилась прочность и отличная ковкость меди. Из получаемой бронзы выходили великолепные орудия труда и охоты, посуда, украшения. Все эти предметы находят в археологических раскопках. Далее бронзовый век сменился железным.
Как получить медь можно было в древности? Первоначально её добывали не из сульфидной, а из малахитовой руды. Ведь в этом случае заниматься предварительным обжигом не было необходимости. Для этого смесь угля и руды помещали в глиняную посудину. Сосуд устанавливали в неглубокую яму и смесь поджигали. Далее начинал выделяться угарный газ, который способствовал восстановлению малахита до свободной меди.
Известно, что на Кипре уже в третьем тысячелетии до нашей эры были построены медные рудники, на которых и осуществлялась её выплавка.
На землях России и соседних государств медные рудники возникли за два тысячелетия до н. э. Их развалины находят и на Урале, и на Украине, и в Закавказье, и на Алтае, и в далёкой Сибири.
Промышленное плавление меди было освоено в тринадцатом веке. А в пятнадцатом в Москве был создан Пушечный двор. Именно там из бронзы отливали орудия различных калибров. Неимоверное количество меди уходило на изготовление колоколов. В 1586 году из бронзы была отлита Царь-пушка, в 1735 году – Царь-колокол, в 1782 году был создан Медный всадник. В 752 году мастера изготовили великолепную статую Большого Будды в храме Тодай-дзи. Вообще, список произведений литейного искусства можно продолжать бесконечно.
В восемнадцатом веке человек открыл электричество. Именно тогда огромные объёмы меди начали уходить на изготовление проводов и подобных им изделий. В двадцатом веке провода научились делать из алюминия, но медь в электротехнике всё ещё имела большое значение.
Иные сферы применения
А вы знаете, что медь очень часто употребляют как катализатор полимеризации ацетилена? Благодаря этому свойству медные трубопроводы, используемые для перемещения ацетилена, разрешено применять лишь тогда, когда содержание меди в них не превышает 64%.
Люди научились использовать ковкость меди и в архитектуре. Фасады и кровли, изготовленные из тончайшей листовой меди, служат безаварийно по 150 лет. Данный феномен объясняется просто: в медных листах происходит автозатухание процесса коррозии. В России используют медный лист для фасадов и кровель в соответствии с нормами Федерального Свода правил СП 31-116-2006.
В недалёком будущем люди планируют использовать медь в качестве бактерицидных поверхностей в клиниках для препятствования перемещению бактерий в помещениях. Все поверхности, к которым притрагивается рука человека, – двери, ручки, перила, водозапорная арматура, столешницы, кровати – специалисты будут изготавливать лишь из этого удивительного металла.