Поршни используются:
В двигателях внутреннего сгорания
Перемещение поршня вдоль цилиндрической плоскости цилиндра, через кривошипно-шатунный механизм вращает коленчатый вал двигателя, который передает крутящий момент.
В компрессорных установках
В компрессорах, коленчатому валу задается вращение электродвигателем и вал через кривошипно-шатунный механизм производит перемещение поршня вдоль цилиндрической плоскости цилиндра, который сжимает газ.
Конструкцию поршня, можно разбить на несколько составляющих:
Днище
выполняется различной формы.
Уплотняющая часть
конструкции поршня, служит для создания компрессии. На ней устанавливаются кольца (компрессионные, маслосъемные).
Юбка
, является направляющей частью поршня, где имеются литьевые приливы для установки поршневого пальца.
В пневмоцилиндрах
Обеспечивает возвратно-поступательное движение штока под действием сжатого воздуха.
В гидроцилиндрах
Обеспечивает возвратно-поступательное движение штока под действием гидростатического напора жидкости.
Требования, предъявляемые к конструкциям поршней.
- Конструктивная прочность.
- Небольшой вес.
- Температурные нагрузки (устойчивость материала) (двигатели, компрессора).
- Уменьшение шумовых характеристик.
- Высокая износостойкость.
- Высокая цикличность.
- Экология (минимальный выброс вредных веществ в атмосферу).
- Низкая теплопроводность (двигатели, компрессора).
Источник
Гидравлический поршень
Неотъемлемой частью любой гидравлической системы является гидравлический поршень. Он выполнен в форме цилиндра. Деятельность поршня заключается в выполнении возвратно-поступательных движений в специальной гильзе. Основной функцией гидравлического поршня является превращение механической энергии в энергию давления жидкости и наоборот.
Поршни бывают как цельной конструкции, так и состоящие из нескольких составных частей. В него могут входить такие детали как шток, уплотнительные и направляющие кольца. Сфера применения довольно обширна, они применяются в различных гидроцилиндрах и насосах.
Основной функцией поршня является регулирование объема, а также давления в поршневой камере.
Наше производство
- Изготовление гидроцилиндров любой сложности для специальной, коммунальной и сельскохозяйственной техники как отечественного так и импортного производства. В производстве мы используем комплектующие производства Италии, что обеспечивает долгую и бесперебойную работу гидроагрегата.
- Продажа новых гидроцилиндров и различных гидроагрегатов.
Мы зарегистрированы на всех государственных площадках а так же на портале поставщиков, где можно заключить с нами договор на ремонт и обслуживание спецтехники.
Мы производим собственные гидроцилиндры, а так же мы являемся официальным представителем ведущих заводов-производителей России, Австрии, Италии
Продукция нашего предприятия выгодно отличается высоким качеством, надежностью и значительным ресурсом исправной работы. На всю продукцию предоставляется гарантия и осуществляется гарантийное обслуживание. Мы будем рады видеть Вас среди наших клиентов. Напишите нам или позвоните и мы постараемся решить ваши проблемы в кратчайшие сроки.
Устройство гидравлического поршня
Есть два характерно разных вида поршней:
- Поверхность механизма является скользящей и непосредственно контактирует с поверхностью гильзы. Такие устройства изготавливаются из антифрикционных веществ латунь, фторопласт и бронза.
- Наиболее востребованными видами являются поршни, в которых по гильзе скользят специальные направляющие и уплотняющие кольца. В корпусе такого устройства делаются специальные канавки под эти кольца. Механизм в таком случае изготавливается из стали.
Для борьбы с протечками в цилиндре используется кольца и манжеты. При одновременно высоком давлении со стороны штока и со стороны поршневой полости, устанавливаются 2 уплотнительных кольца или манжеты, работающие в разные стороны. Если оно оказывается с 1 стороны, то обычно ставится всего одна манжета.
Принцип работы гидравлического поршня
Можно выделить два основных принципиально разных вида работы:
- В гидроцилиндре. Рабочая жидкость поступает в полость гидравлического цилиндра и оказывает нажим с определенной силой на поршень. В результате чего он двигается в нужном для гидросистемы направлении, и выполняет функцию преобразования гидравлической энергии в механическую. Протеканию жидкости из поршневой камеры в штоковую, при высоком давлении, препятствуют специальные уплотнители.
- В гидронасосе. Здесь сперва мы совершаем механические движения. В результате которых мы оказываем давление на рабочую жидкость при помощи механической энергии, рабочая камера уменьшается и жидкость уходит в систему нагнетания. Далее мы совершаем обратное движение в результате рабочая камера увеличивается, и происходит всасывание жидкости через систему подачи.
Типы гидроцилиндров
В зависимости от конструкции различают несколько видов гидравлических цилиндров.
- По характеру хода
- Одноступенчатые
- Телескопические
- По направлению действия рабочей жидкости
- Одностороннего действия
- Двухстороннего действия
- По возможности торможения
- С торможением
- Без торможения
- По виду рабочего звена
- Плунжерные
- Мембранные
- Сильфонные
- Поршневые С односторонним штоком
- С двухсторонним штоком
Устройство гидроцилиндра двухстороннего действия
Гидравлические цилиндры двухстороннего действия имеют две разделенные герметичные рабочие полости, в которые по разным трубопроводам подводится жидкость. Гидроцилиндры двухстороннего действия могут передавать развиваемое усилие как в прямом, так и в обратном направлениях.
Устройство гидроцилиндра двухстороннего действия рассмотрим на примере самой распространенной конструкции с односторонним штоком.
Гидроцилиндр с односторонним штоком
Основные элементы конструкции двухстороннего гидроцилиндра с односторонним штоком показаны на рисунке.
- шток
- передняя крышка
- гильза
- поршень
- гайка
- задняя крышка
- грязесъемник
- манжета штоковая
- кольцо направляющее штоковое
- манжета поршневая
- кольцо резиновое
- кольцо направляющее поршневое
Принцип работы гидроцилиндра
Рабочая жидкость от насоса, через распределитель направляется в одну из полостей (поршневую или штоковую), противоположная полость соединятся со сливом.
При поступлении жидкости в поршневую полость шток гидроцилиндра выдвигается, при необходимости преодолевая усилие нагрузки. При поступлении рабочей жидкости в штоковую полость шток гидроцилиндра втягивается.
Выдвинуть шток | Нейтральное положение | Втянуть шток |
При поступлении жидкости в поршневую полость усилие, развиваемое гидроцилиндром можно вычислить по формуле:
При поступлении жидкости в штоковую полость эффективная площадь изменится, из площади поршня необходимо вычесть площадь штока.
Герметичность рабочих камер обеспечивается манжетными уплотнениями, не позволяющими перетекать жидкости из поршневой полости в штоковую. В крышке гидроцилиндра также устанавливают манжету для уплотнения штока, и грязесъемник для предотвращения попадания частиц загрязнения в полость цилиндра.
Гидроцилиндр с двухсторонним штоком
Усилие и скорость перемещения поршня со штоком при прямом и обратном ходе будут различными. Если необходимы одинаковые усилия или одинаковы скорости перемещения выходных звеньев, то используют гидроцилиндры с двухсторонним штоком.
В гидравлических цилиндрах этого типа один поршень связан с двумя штоками.
Для вычисления скорости и усилия гидроцилиндра с двусторонним штоком, можно применять формулы:
В современной технике применяются конструкции гидроцилиндров с двухсторонним штоком с закрепленным цилиндром и с закрепленным штоком.
Гидроцилиндр — схемы, расчёт, чертёж, устройство, принцип действия, разборка, сборка
Гидравлическим цилиндром называется объемный гидродвигатель с возвратно-поступательным движением выходного звена. Гидроцилиндры широко применяются в качестве исполнительных механизмов различных гидравлических машин. По конструкции и принципу действия гидроцилиндры очень разнообразны и классифицируются в соответствии с ГОСТ 17752—81.
Гидроцилиндр расчет усилия
По направлению действия рабочей жидкости все гидроцилиндры подразделяют на две группы: одностороннего и двухстороннего действия. На рабочий орган гидроцилиндра одностороннего действия жидкость может оказывать давление только с одной стороны, как в схемах на рис. 1, а, г, д.
В этих цилиндрах движение поршня в одну сторону обеспечивается за счет жидкости, подводимой в полость, а обратное перемещение — другим способом — за счет пружины (см. рис. 1, а) или веса груза при вертикальном движении поршня (см. рис. 1, д). Перемещение рабочего органа гидроцилиндра двухстороннего действия в обоих направлениях обеспечивается за счет рабочей жидкости (рис. 1, б, в). В таких гидроцилиндрах жидкость подводится как в левую полость, так и в правую.
Гидроцилиндры подразделяются также по конструкции рабочего органа. Наибольшее распространение получили гидроцилиндры с рабочим органом в виде поршня или плунжера, причем поршневые гидроцилиндры могут быть выполнены с односторонним (см. рис. 1, я, б) или двухсторонним штоком (см. рис. 1, в), а плунжерные гидроцилиндры могут быть только одностороннего действия и с односторонним штоком (см. рис. 1, г).
По характеру хода выходного звена гидроцилиндры делятся на одноступенчатые и телескопические (многоступенчатые). Одноступенчатые гидроцилиндры показаны на рис. 1, а–г. Телескопические гидроцилиндры представляют собой несколько вставленных друг в друга поршней. В качестве примера на рис. 1, д приведена схема двухступенчатого телескопического гидроцилиндра одностороннего действия. В таком гидроцилиндре поршни выдвигаются последовательно друг за другом.
Полный КПД гидроцилиндров определяется в первую очередь механическим КПД, который для большинства конструкций составляет 0,85…0,95. Гидравлические потери в цилиндрах практически отсутствуют, и гидравлический КПД ( ηг = 1 ). Объемные потери в рассматриваемых устройствах могут иметь место в зазоре между поршнем и цилиндром. Однако при уплотнении этого места резиноми кольцами или манжетами они малы. Тогда объемный КПД также можно считать равным единице ( η0 = 1 ).
При расчете перепада давлений на гидроцилиндре используются две основные формулы. Рассмотрим их на примере гидроцилиндра двухстороннего действия с односторонним штоком (рис. 2). Первая из них связывает силу F на штоке и перепад давлений на гидроцилиндре ( ΔP = Р1 — P2 ). С упрощением она выглядит следующим образом:
F= ΔP*S*ηм
где S – эффективная площадь, на которую действует подводимое давление.
При движении жидкости слева направо на расчетной схеме (см. рис. 2.) этой площадью является площадь поршня (S = Sп), а при обратном движении — площадь поршня за вычетом площади штока ( S= Sп-Sш ).
Вторая формула связывает расход и скорость движения поршня:
Q=Vп*Sп*1/η0
или
Q´= Vп*(Sп-Sш)*1/η0
Формула записана в двух вариантах, так как расходы до гидроцилиндра и после него различны. Для пояснения этого представим, что поршень на расчетной схеме (см. рис. 2.) переместился из начального положения вправо на расстояние ( L ). В таком случае в левую полость гидроцилиндра поступил объем жидкости ( W= Sп*L ), а из правой полости вытеснился меньший объем ( W´= (Sп-Sш)*L ) Из соотношения объемов W и W´ следует, что расходы до и после гидроцилиндра связаны зависимостью Q / Q´ = Sп / (Sп-Sш) Для гидроцилиндра с двухсторонним штоком (см. рис. 1, в) Q = Q´.
Изготовление гидроцилиндров по чертежам
Устройство гидроцилиндров одностороннего действия
Гидроцилиндры одностороннего действия способны развивать усилие лишь в одном направлении. Обратный ход таких цилиндров осуществляется под действием пружины, силы тяжести, или внешнего воздействия на шток.
Плунжерный гидроцилиндр
В гидроцилиндрах этого типа жидкость воздействует на плунжер, расположенный в рабочей камере. Обратный ход осуществляется за счет внешних сил или силы тяжести.
Плунжер способен передавать только усилие сжатия, величину усилия можно вычислить используя зависимость:
Скорость перемещения плунжера будет зависеть от диаметра плунжера и расхода рабочей жидкости.
Гидравлический цилиндр с пружинным возвратом
Гидроцилиндр с пружинным возвратом показан на рисунке.
При поступлении рабочей жидкости в поршневую полость осуществляется рабочий ход, пружина, расположенная в штоковой полости сжимается — шток выдвигается.
Обратный ход осуществляется за счет усилия пружины, поршневая полость при этом соединяется со сливом. Пружина может устанавливаться как в поршневой, так и в штоковой полости.
Конструктивные особенности и принцип действия
Конструкция любого гидравлического цилиндра включает в себя следующие элементы:
- корпус-гильзу;
- поршень;
- шток поршня.
Несколько отличаются по конструкции плунжерные гидроцилиндры, в которых плунжер одновременно выполняет функции поршня и штока.
Схема гидравлического цилиндра
Принцип работы гидроцилиндра любого типа основан на оказании давления рабочей жидкости на поршень. В результате воздействия на поршень гидроцилиндра шток начинает совершать циклическую работу, передавая усилие на рабочий узел обслуживаемого устройством оборудования. Таким рабочим узлом, функционирование которого обеспечивает цилиндр гидравлический, в зависимости от типа и назначения оборудования может быть уплотняющая платформа, гибочный или прессующий механизм, а также устройство любого другого типа, обеспечивающее передачу усилия гидроцилиндра конечному получателю силовой энергии.
Устройство раздвижного гидравлического цилиндра
Поскольку усилие, создаваемое гидравлическим цилиндром, как уже говорилось выше, формируется за счет давления, оказываемого рабочей жидкостью на поршень, свойства данной жидкости оказывают значительное влияние на эффективность использования, технические и эксплуатационные характеристики самого цилиндра. В качестве рабочей жидкости для гидравлических цилиндров поршневого или плунжерного типа, как правило, используется специальное масло, которое должно отвечать определенным требованиям по целому ряду параметров:
- химическому составу и плотности;
- значениям температур, при которых рабочая жидкость сохраняет свои изначальные характеристики;
- склонности рабочей жидкости к развитию окислительных процессов.
Для приведения в действие гидравлических цилиндров различных типов и моделей рабочую жидкость в их внутреннюю камеру нагнетают при помощи ручного или электрического насоса.
Гидроцилиндры специального исполнения
Рассмотрим несколько особых конструкций гидроцилиндров.
Телескопические гидроцилиндры
В телескопических гидроцилиндрах один шток размещен в полости другого штока. Это позволяет получить большую величину перемещения выходного звена при неизменных габаритах, так как в телескопических цилиндрах ход может превышать длину гильзы.
Телескопический гидроцилиндр одностороннего действия
Рабочая жидкость подводится в полость цилиндра через заднюю крышку. Секции выдвигаются последовательно — в первую очередь движение начнет секция с наибольшей эффективной площадью, затем с меньшей. Скорость при выдвижении каждой последующей секции будет увеличиваться, а усилие падать, в связи уменьшением эффективной площади. По этой причине расчетным должно быть усилие на секции с минимальной эффективной площадью.
Обратный ход осуществляется под действием внешних сил, рабочая полость при этом соединяется со сливом.
Телескопический гидроцилиндр двухстороннего действия
Подвод рабочей жидкости в представленной на рисунке конструкции осуществляется через шток.
Выдвижение секций, осуществляется в том же порядке, что и в телескопических гидроцилиндрах одностороннего действия.
Обратный ход обеспечивается подводом рабочей жидкости в штоковую полость, поршневая полость при этом соединяется со сливом.
Комбинированные гидроцилиндры
Для увеличения усилия на штоке гидроцилиндра, при отсутствии возможности увеличения наружного диаметра, используют тандемные или последовательно установленные гидроцилиндры. Схема сдвоенного гидроцилиндра показана на рисунке.
В данном случае увеличение усилия достигается за счет добавления второй рабочей камеры и дополнительного поршня, что позволяет увеличить эффективную площадь гидроцилиндра.
Конструктор для машиностроителей. Поршневые гидроцилиндры
А. Шекунов, ЗАО «ГидроПак Силовые Системы», В. Васильченко, канд. техн. наук
Гидроцилиндры широко применяют в гидросистемах как источники привода рабочих органов мобильных машин и исполнительных механизмов промышленного оборудования. В гидросистеме с одним, реже – с двумя насосами может быть установлено до 6…10 гидроцилиндров, а в некоторых случаях в два или даже в три раза больше. По функциональным признакам гидроцилиндры – это объемные гидродвигатели, предназначенные для преобразования энергии потока рабочей жидкости (РЖ) в механическую энергию выходного звена с возвратно-поступательным движением. Причем подвижным звеном может выступать как шток, так и корпус (гильза) гидроцилиндра.
В зависимости от рабочего цикла, необходимых скоростей и усилий применяют поршневые гидроцилиндры разных типоразмеров и исполнений. Например, они могут быть одностороннего или двустороннего действия. В гидроцилиндрах двустороннего действия прямой и обратный ход совершается под давлением РЖ, а в гидроцилиндрах одностороннего действия обратный ход совершается под действием внешней нагрузки или пружины.
Для привода рабочих органов мобильных машин наиболее широко применяют поршневые гидроцилиндры двустороннего действия с односторонним выходом штока. Усилие на штоке и его перемещение могут быть направлены в обе стороны в зависимости от того, в какую из полостей нагнетается РЖ; обычно противоположная полость при этом соединяется со сливной гидролинией. Гидроцилиндры с двусторонним штоком применяют в основном для поворота рабочего оборудования навесных экскаваторов, при этом подвижным звеном является корпус.
Поршневые гидроцилиндры двустороннего действия унифицированной конструкции предназначены для гидроприводов мобильных машин и эксплуатируются на РЖ вязкостью от 10 до 3500 мм2/c в условиях умеренного (У), холодного (ХЛ) и тропического (Т) климата. В России гидроцилиндры должны соответствовать общим техническим требованиям по ГОСТ 126514–87, ГОСТ 17411–91. Ниже приведены их основные параметры.
• Давление: номинальное Рном, максимальное Рмакс и холостого хода Рхх.
• Основные размеры: диаметр цилиндра (поршня) D, штока d, ход штока L и соотношение рабочих площадей j.
• Номинальная сила цилиндра Fном, толкающая сила Fп, тянущая Fш.
• Скорость штока цилиндра: номинальная Vном, минимальная Vмин, максимальная Vмакс.
• Коэффициент полезного действия: гидромеханический hгм и общий h, не менее.
• Ход и время торможения (указывают для гидроцилиндров, имеющих тормозные устройства).
• Масса (указывают без рабочей жидкости).
Для ориентировочных расчетов механический КПД гидроцилиндра hм можно принимать равным 0,95…0,98, при этом меньшее значение действительно для меньших значений вязкости РЖ и скорости движения штока. Скорость V, м/с, движения штока гидроцилиндра связана с расходом Q рабочей жидкости и определяется от подвода РЖ в поршневую или в штоковую полость. Если отношение диаметров поршня и штока D/d = 2, то для гидроцилиндров c односторонним штоком можно обеспечить равенство усилий и скоростей при движении в обе стороны. Для этого необходимо при выдвижении штока подводить РЖ в обе полости гидроцилиндра, а при обратном ходе – только в штоковую полость. Такой способ включения гидроцилиндра называют дифференциальным. Скорость движения штока в этом случае можно вычислить по формуле Vш = 4Q/(pd2).
По способу подвода РЖ унифицированная конструкция поршневых гидроцилиндров предусматривает два исполнения: штуцерное резьбовое для присоединения трубопроводов гидроцилиндров на Рном =16…20 МПа и фланцевое для гидроцилиндров на Рном = 25 и 32 МПа (рис. 1). Для определения соответствия чертежам и техническим условиям гидроцилиндры подвергают приемо-сдаточным испытаниям в соответствии с ГОСТ 22976–78 и ГОСТ 18464–80.
На рис. 2 приведена гидравлическая схема стенда для испытания гидроцилиндров на прочность при статической нагрузке, давления страгивания и холостого хода, наружную герметичность и внутренние утечки. Перед испытанием обязательно проверяют работоспособность гидроцилиндра на холостом ходу. В качестве РЖ следует использовать гидравлические масла МГЕ46В (МГ-30) по ТУ 38-10150-79 или в зимний период МГ-15В (ВМГЗ) по ТУ 38-101479-88. Тонкость фильтрации масел: номинальная 25 мкм, при заправке бака стенда – 10 мкм. Наибольшая температура масла в баке стенда допускается не выше +65 °С для МГ-15В и не выше + 75 °С для МГЕ46В.
В связи с экономическими преобразованиями в нашей стране, а также сложившейся ситуацией, когда отдельные специализированные заводы по производству гидроцилиндров оказались в странах СНГ, возник дефицит потребности в гидроцилиндрах. Многие машиностроительные заводы, выпускающие машины и оборудование с гидроприводом, вынуждены изготавливать гидроцилиндры для собственных нужд на имеющемся металлообрабатывающем оборудовании и дополнительно изготовленной оснастке.
Без специального технологического оборудования для чистовой расточки и раскатки внутренней поверхности гильз, шлифования и полирования штоков, обеспечивающего параметры шероховатости по ГОСТ 2789–73 рабочих уплотняемых поверхностей штоков и гильз гидроцилиндров, а также последующего хромирования наружной поверхности штоков путем электролитического нанесения пленки толщиной 20…30 мкм невозможно изготовить коррозионно- и износостойкие штоки. Высота неровностей наружной рабочей поверхности штока после хромирования и полирования должна быть не более Ra 0,160 мкм, рабочей поверхности гильзы гидроцилиндра – Ra 0,320 мкм по ГОСТ 2789–73.
Для унифицированной конструкции гидроцилиндров на Рном = 10, 16, 25 и 32 МПа отраслевым стандартом ОСТ 22-1417–79 предусмотрен следующий ряд наружных диаметров гильз (поршней) и штоков гидроцилиндров:
D = 30, 35, 40, 50, 63, 80,100, 110, 125, 140, 160, 180, 200, 250 мм;
d (при j = 1,6/2) = 10, 13, 15, 18/25, 22/32, 28/40, 36/50, 45/63, 50/70, 56/80, 63/90, 70/100, 80/110, 90/125, 100/140, 110/160 мм.
Для изготовления гидроцилиндров современного технического уровня и качества необходимы специальные металлообрабатывающее и гальваническое оборудование, инструмент и обученные специалисты высокой квалификации. Следовательно, организация нового производства гидроцилиндров с экологически вредным гальваническим участком потребует больших финансовых затрат. Для большинства предпринимателей путь этот труден, а то и невозможен.
В технически развитых странах компании пошли по иному пути: они широко используют комплектующие, изготовленные специализированными фирмами, которые достигли высокого технического уровня и качества изделий. Одни производители после расточки или протяжки на специальных хонинговальных станках осуществляют чистовую отделку внутренней цилиндрической поверхности гильз или наружной поверхности штоков, обеспечивая хромовое покрытие и сопротивляемость агрессивному воздействию внешней среды, другие с высокой точностью изготавливают поршни и передние втулки, третьи предлагают любые проушины и опорные подшипники.
Особое внимание уделяется подбору грязесъемников и уплотнений, а также опорно-направляющих колец, изготовители которых достигли оптимальных показателей этих элементов по их геометрии, материалам, а также последовательному расположению в уплотняющем узле. В результате основной изготовитель гидроцилиндров выполняет механообработку деталей для последующей сборки комплектного гидроцилиндра с параметрами, необходимыми заказчику. После сборки гидроцилиндр устанавливают на стенд для приемочного испытания, затем упаковывают в пластик или другую упаковку с высокой степенью защиты и направляют на склад для отправки потребителю.
Наружные диаметры цилиндров и штоков в большинстве случаев соответствуют нормативным документам. Это позволяет ремонтно-механическим заводам и другим сервисным предприятиям использовать комплектующие изделия для замены изношенных узлов и содержать в работоспособном состоянии парк машин, находящихся в эксплуатации, без изменения установочных размеров.
Новые технологии производства поршневых гидроцилиндров двустороннего действия существенно снижают финансовые затраты, сокращают время на подготовку производства, исключают необходимость применения экологически вредного гальванического процесса хромирования и утилизации отходов при хромировании штоков.
Экономически целесообразней приобретать готовые для сборки комплектующие, что позволяет отказаться от малоэффективных и трудоемких производственных операций, дает возможность сократить персонал, перевести его на сборочные работы, разнообразить выпуск гидроцилиндров различных типоразмеров по заказам потребителей.
Создание в России производств по сборке поршневых гидроцилиндров из зарубежных комплектующих актуально и очень своевременно. Сегодня подавляющее большинство заводов, производящих строительную, землеройную и дорожную технику, либо закупают уже готовую гидравлику, которая и стоит дорого, либо создают эти агрегаты сами на оборудовании, далеком от совершенства, а потому и продукция у них получается низкого качества.
Кроме раскатанных и хонингованных труб, хромированных штоков, поршней, передних втулок, проушин и опорных подшипников в Россию ввозят из-за рубежа уплотнения, без которых создать хороший гидроцилиндр невозможно. Когда говорят о невысоком качестве гидроцилиндров российского производства, в большей степени это относится к качеству именно таких компонентов.
(Продолжение следует)
Характеристики гидроцилиндров
Основные параметры гидроцилиндров можно разделить на несколько групп.
Геометрические параметры
- Диаметр поршня (гильзы), иногда его называют диаметром гидроцилиндра, наиболее распространненными являются диаметры: 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 320, 400, 500, 620, 800 миллиметров.
- Диаметр штока, стандартизированы следующие диаметры штоков гидравлических цилиндров: 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 320, 400, 500, 630, 800 миллиметров.
- Ход — величина максимально возможного перемещания поршня со штоком или плунжера гидроцилиндра
Типовые конструкции гидроцилиндров
Несмотря на огромное разнообразие конструкций гидравлических цилиндров существуют, типовые решения, применяемые при проектировании гидроцилиндров, рассмотрим некоторые из них.
Гидроцилиндр на шпильках
Передняя и задняя крышка гидроцилиндров этой конструкции связаны шпильками (анкерами), гильза зажата между крышками цилиндра. Уплотнение поршня обеспечивается двумя манжетами.
Круглый гидроцилиндр
В представленной конструкции крышки крепятся к круглым фланцам, закрепленным с помощью сварки или резьбы на гильзе. Показанный на рисунке тип уплотнения поршня обеспечивает уплотнение в обоих направлениях.
Сварной гидроцилиндр
Крышки приварены к гильзе, конструкция неразборная, неремонтопригодная. В цилиндре установлены компактные поршневые уплотнения.
Инструмент и метал для создания пресса своими руками
- Сварочный инструмент
- Болгарка или пила по металлу
- Домкрат бутылочного типа
- Две пружины
- Лист из стали толщиной больше 8 мм пойдет для основания конструкции
- Обрезок стального патрубка для конструирования втулок под головку штока
- Швеллеры, трубки квадратного и круглого сечения, уголки
Как только чертеж готов и список материалов заготовлен, начинаем сборку домкрата. На первой стадии режем метал в соответствии с величинами, указанными в чертеже.
Собираем основную часть пресса. Свариваем квадратные трубы, получаем прямоугольный каркас на него навариваем стальной лист. Должен получится прямоугольник с листом стали в основании. Не забываем следить чтобы углы конструкции были строго 90 градусов. Дальше нам нужна подвижная платформа, которая будет висеть на пружинах в ней будет домкрат. В верхней части нам нужно создать упорную площадку чтобы шток домкрата не выскочил при нагрузке. На самой подвижной площадке тоже следует наварить стенки для чтобы он находился строго по середине конструкции. Для укрепления жёсткости рекомендуется наваривать уголки на углы конструкции. Также нам нужно наварить нижнюю платформу.